These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35641594)

  • 1. Production of synthetic rutile from tin ore beneficiation byproduct through preoxidation and reductive leaching in hydrochloric acid.
    Kurniawan MR; Imami TG; Ichlas ZT; Hidayat T; Mubarok MZ
    Sci Rep; 2022 May; 12(1):9092. PubMed ID: 35641594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of scandium from bauxite residue by high-pressure leaching in sulfuric acid solution.
    Kanekaputra MR; Mubarok MZ
    Heliyon; 2023 Mar; 9(3):e14652. PubMed ID: 36994395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonoxidative Microwave Radiation Roasting of Bastnasite Concentrate and Kinetics of Hydrochloric Acid Leaching Process.
    Zheng Q; Xu Y; Cui L; Ma S; Guan W
    ACS Omega; 2020 Oct; 5(41):26710-26719. PubMed ID: 33110997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transformation sequence of pre-oxidized roast-leach ferrovanadium residue.
    Nevondo M; Koech L; Ola-Omole OO; Ramakokovhu MM; Teffo ML; Sadiku R
    Heliyon; 2024 Mar; 10(6):e28308. PubMed ID: 38560673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using of leaching reactant obtained from mill scale in hydrometallurgical copper extraction.
    Nizamoğlu H; Turan MD
    Environ Sci Pollut Res Int; 2021 Oct; 28(39):54811-54825. PubMed ID: 34013418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study on the chloride effectiveness of synthetic rutile and natural rutile manufactured from ilmenite ore.
    Jung EJ; Kim J; Lee YR
    Sci Rep; 2021 Feb; 11(1):4045. PubMed ID: 33597587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of acid leaching of ilmenite decomposed by KOH Part 2. Leaching by H2SO4 and C2H2O4.
    Nayl AA; Awwad NS; Aly HF
    J Hazard Mater; 2009 Sep; 168(2-3):793-9. PubMed ID: 19321259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the Processing of Fine Dusts from the Electric Smelting of Ilmenite Concentrates to Obtain Titanium Dioxide.
    Ultarakova A; Karshyga Z; Lokhova N; Yessengaziyev A; Kassymzhanov K; Mukangaliyeva A
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling of NdFeB magnets employing oxidation, selective leaching, and iron precipitation in an autoclave.
    Emil-Kaya E; Polat B; Stopic S; Gürmen S; Friedrich B
    RSC Adv; 2023 Jan; 13(2):1320-1332. PubMed ID: 36686927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Leaching Kinetics of Boron from the Alkali-Activated Ludwigite Ore.
    Liang B; Hu H; Xiao B; Lu Z; Yuan W; Huang Z
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of uranium from phosphate ore in the Sheikh Habil-Iran mine: part I- multivariable optimization of leaching process using the response surface method.
    Abdeshahi A; Outokesh M; Nejad DG; Zare MH; Sadeghi MH
    Front Chem; 2023; 11():1292620. PubMed ID: 38124704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH
    Zheng F; Guo Y; Qiu G; Chen F; Wang S; Sui Y; Jiang T; Yang L
    J Hazard Mater; 2018 Feb; 344():490-498. PubMed ID: 29096260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaching and solvent extraction purification of zinc from Mehdiabad complex oxide ore.
    Soltani F; Darabi H; Aram R; Ghadiri M
    Sci Rep; 2021 Jan; 11(1):1566. PubMed ID: 33452391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights on scandium separation from scandium concentrate with titanium dioxide wastewater.
    Xiao J; Zhong N; Cheng R; Deng B; Zhang J
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):15837-15850. PubMed ID: 38305971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment.
    Fomchenko NV; Muravyov MI
    J Environ Manage; 2018 Nov; 226():270-277. PubMed ID: 30121463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst.
    Rayner MK; Billing DG; Coville NJ
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Jun; 70(Pt 3):498-509. PubMed ID: 24892597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola.
    Yang JG; Yang JY; Peng CH; Tang CB; Zhou KC
    Environ Technol; 2009 Jun; 30(7):693-700. PubMed ID: 19705606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation and classification of solid wastes coming from reductive acid leaching of low-grade manganiferous ore.
    De Michelis I; Ferella F; Beolchini F; Olivieri A; Vegliò F
    J Hazard Mater; 2009 Mar; 162(2-3):1285-91. PubMed ID: 18650004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method.
    Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z
    Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of zinc from leach residues with minimum iron dissolution using oxidative leaching.
    Alizadeh R; Rashchi F; Vahidi E
    Waste Manag Res; 2011 Feb; 29(2):165-71. PubMed ID: 20516004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.