These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35641757)

  • 1. Genotyping Platforms for Genome-Wide Association Studies: Options and Practical Considerations.
    Hyten DL
    Methods Mol Biol; 2022; 2481():29-42. PubMed ID: 35641757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revolution in Genotyping Platforms for Crop Improvement.
    Scheben A; Batley J; Edwards D
    Adv Biochem Eng Biotechnol; 2018; 164():37-52. PubMed ID: 29356847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural variations and genome-wide association studies in crop plants.
    Huang X; Han B
    Annu Rev Plant Biol; 2014; 65():531-51. PubMed ID: 24274033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of genotyping-by-sequencing analysis methods on low-coverage crop datasets shows advantages of a new workflow, GB-eaSy.
    Wickland DP; Battu G; Hudson KA; Diers BW; Hudson ME
    BMC Bioinformatics; 2017 Dec; 18(1):586. PubMed ID: 29281959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application.
    Scheben A; Batley J; Edwards D
    Plant Biotechnol J; 2017 Feb; 15(2):149-161. PubMed ID: 27696619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives.
    Rasheed A; Hao Y; Xia X; Khan A; Xu Y; Varshney RK; He Z
    Mol Plant; 2017 Aug; 10(8):1047-1064. PubMed ID: 28669791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and utilizing crop genome diversity via high-resolution genotyping.
    Voss-Fels K; Snowdon RJ
    Plant Biotechnol J; 2016 Apr; 14(4):1086-94. PubMed ID: 27003869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skim sequencing: an advanced NGS technology for crop improvement.
    Kumar P; Choudhary M; Jat BS; Kumar B; Singh V; Kumar V; Singla D; Rakshit S
    J Genet; 2021; 100():. PubMed ID: 34238778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits.
    Zahid G; Aka Kaçar Y; Dönmez D; Küden A; Giordani T
    Mol Biol Rep; 2022 Jun; 49(6):5341-5352. PubMed ID: 35064403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of genotyping by sequencing technology to a variety of crop breeding programs.
    Kim C; Guo H; Kong W; Chandnani R; Shuang LS; Paterson AH
    Plant Sci; 2016 Jan; 242():14-22. PubMed ID: 26566821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome-wide genotyping strategies and data integration in crop plants.
    Torkamaneh D; Boyle B; Belzile F
    Theor Appl Genet; 2018 Mar; 131(3):499-511. PubMed ID: 29352324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive evaluation of polygenic score and genotype imputation performances of human SNP arrays in diverse populations.
    Nguyen DT; Tran TTH; Tran MH; Tran K; Pham D; Duong NT; Nguyen Q; Vo NS
    Sci Rep; 2022 Oct; 12(1):17556. PubMed ID: 36266455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical reproducibility of genotyping SNP arrays used in genome-wide association studies.
    Hong H; Xu L; Liu J; Jones WD; Su Z; Ning B; Perkins R; Ge W; Miclaus K; Zhang L; Park K; Green B; Han T; Fang H; Lambert CG; Vega SC; Lin SM; Jafari N; Czika W; Wolfinger RD; Goodsaid F; Tong W; Shi L
    PLoS One; 2012; 7(9):e44483. PubMed ID: 22970228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crop genome-wide association study: a harvest of biological relevance.
    Liu HJ; Yan J
    Plant J; 2019 Jan; 97(1):8-18. PubMed ID: 30368955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip.
    Guo Z; Yang Q; Huang F; Zheng H; Sang Z; Xu Y; Zhang C; Wu K; Tao J; Prasanna BM; Olsen MS; Wang Y; Zhang J; Xu Y
    Plant Commun; 2021 Nov; 2(6):100230. PubMed ID: 34778746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The COPILOT Raw Illumina Genotyping QC Protocol.
    Patel H; Lee SH; Breen G; Menzel S; Ojewunmi O; Dobson RJB
    Curr Protoc; 2022 Apr; 2(4):e373. PubMed ID: 35452565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imputation-based assessment of next generation rare exome variant arrays.
    Martin AR; Tse G; Bustamante CD; Kenny EE
    Pac Symp Biocomput; 2014; ():241-52. PubMed ID: 24297551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the concordance between different SNP-genotyping platforms in sheep.
    Marina H; Chitneedi P; Pelayo R; Suárez-Vega A; Esteban-Blanco C; Gutiérrez-Gil B; Arranz JJ
    Anim Genet; 2021 Dec; 52(6):868-880. PubMed ID: 34515357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacogenomic allele coverage of genome-wide genotyping arrays: a comparative analysis.
    Lenz C; Narang A; Bousman CA
    Pharmacogenet Genomics; 2024 Jun; 34(4):130-134. PubMed ID: 38359167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large SNP arrays for genotyping in crop plants.
    Ganal MW; Polley A; Graner EM; Plieske J; Wieseke R; Luerssen H; Durstewitz G
    J Biosci; 2012 Nov; 37(5):821-8. PubMed ID: 23107918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.