These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35642426)

  • 1. Which lower limb joints compensate for destabilizing energy during walking in humans?
    Golyski PR; Sawicki GS
    J R Soc Interface; 2022 Jun; 19(191):20220024. PubMed ID: 35642426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.
    Selgrade BP; Toney ME; Chang YH
    J Biomech; 2017 Feb; 53():136-143. PubMed ID: 28126335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How age and surface inclination affect joint moment strategies to accelerate and decelerate individual leg joints during walking.
    Waanders JB; Murgia A; Hortobágyi T; DeVita P; Franz JR
    J Biomech; 2020 Jan; 98():109440. PubMed ID: 31690458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower extremity joint power and work during recovery following trip-induced perturbations.
    Shokouhi S; Mokhtarzadeh H; Lee PV
    Gait Posture; 2024 Jan; 107():1-7. PubMed ID: 37703781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leg joint function during walking acceleration and deceleration.
    Qiao M; Jindrich DL
    J Biomech; 2016 Jan; 49(1):66-72. PubMed ID: 26686397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Onset timing of treadmill belt perturbations influences stability during walking.
    Golyski PR; Vazquez E; Leestma JK; Sawicki GS
    J Biomech; 2022 Jan; 130():110800. PubMed ID: 34864443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length.
    Schwaner MJ; Nishikawa KC; Daley MA
    Integr Comp Biol; 2022 May; ():. PubMed ID: 35612979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint-level coordination patterns for split-belt walking across different speed ratios.
    Kambic RE; Roemmich RT; Bastian AJ
    J Neurophysiol; 2023 May; 129(5):969-983. PubMed ID: 36988216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.
    Skidmore J; Artemiadis P
    J Neuroeng Rehabil; 2016 Mar; 13():32. PubMed ID: 27004528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
    Huang TW; Shorter KA; Adamczyk PG; Kuo AD
    J Exp Biol; 2015 Nov; 218(Pt 22):3541-50. PubMed ID: 26385330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of adding mass to the legs on the energetics and biomechanics of walking.
    Browning RC; Modica JR; Kram R; Goswami A
    Med Sci Sports Exerc; 2007 Mar; 39(3):515-25. PubMed ID: 17473778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepping responses to treadmill perturbations vary with severity of motor deficits in human SCI.
    Chu VWT; Hornby TG; Schmit BD
    J Neurophysiol; 2018 Aug; 120(2):497-508. PubMed ID: 29668389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric walking on an incline affects aspects of positive mechanical work asymmetrically.
    Hurt CP; Kuhman DJ; Reed WR; Baumann A; Jiang W; Marsh K
    J Biomech; 2022 May; 136():111083. PubMed ID: 35413513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons.
    Nuckols RW; Takahashi KZ; Farris DJ; Mizrachi S; Riemer R; Sawicki GS
    PLoS One; 2020; 15(8):e0231996. PubMed ID: 32857774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.
    Toebes MJ; Hoozemans MJ; Dekker J; van Dieën JH
    Gait Posture; 2014; 40(1):215-9. PubMed ID: 24768117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans.
    Ogawa T; Kawashima N; Ogata T; Nakazawa K
    J Neurophysiol; 2014 Feb; 111(4):722-32. PubMed ID: 24225544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of robot-based perturbed-balance training during treadmill walking in a high-functioning chronic stroke subject: a case-control study.
    Matjačić Z; Zadravec M; Olenšek A
    J Neuroeng Rehabil; 2018 Apr; 15(1):32. PubMed ID: 29642921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance.
    Toney ME; Chang YH
    Exp Brain Res; 2016 Oct; 234(10):3011-23. PubMed ID: 27334888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking.
    Grabowski AM; D'Andrea S
    J Neuroeng Rehabil; 2013 Jun; 10():49. PubMed ID: 23758860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.