These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35642900)
1. On the Practical Applications of the Magnesium Fluorinated Alkoxyaluminate Electrolyte in Mg Battery Cells. Pavčnik T; Lozinšek M; Pirnat K; Vizintin A; Mandai T; Aurbach D; Dominko R; Bitenc J ACS Appl Mater Interfaces; 2022 Jun; 14(23):26766-74. PubMed ID: 35642900 [TBL] [Abstract][Full Text] [Related]
2. Critical Issues of Fluorinated Alkoxyborate-Based Electrolytes in Magnesium Battery Applications. Mandai T ACS Appl Mater Interfaces; 2020 Sep; 12(35):39135-39144. PubMed ID: 32805873 [TBL] [Abstract][Full Text] [Related]
3. Cost-Effective Rechargeable Magnesium Battery Based on a Fluorinated Alkoxyaluminate Electrolyte and a Carbonyl Polymer Cathode. Hu Z; Huang L; Gan X; Han Y; Chu J; Song Z ACS Appl Mater Interfaces; 2024 Apr; 16(15):19014-19025. PubMed ID: 38573769 [TBL] [Abstract][Full Text] [Related]
4. A novel calcium fluorinated alkoxyaluminate salt as a next step towards Ca metal anode rechargeable batteries. Pavčnik T; Forero-Saboya JD; Ponrouch A; Robba A; Dominko R; Bitenc J J Mater Chem A Mater; 2023 Jul; 11(27):14738-14747. PubMed ID: 37441279 [TBL] [Abstract][Full Text] [Related]
5. Establishing a Stable Anode-Electrolyte Interface in Mg Batteries by Electrolyte Additive. Li Z; Diemant T; Meng Z; Xiu Y; Reupert A; Wang L; Fichtner M; Zhao-Karger Z ACS Appl Mater Interfaces; 2021 Jul; 13(28):33123-33132. PubMed ID: 34227794 [TBL] [Abstract][Full Text] [Related]
6. Role of Chloride for a Simple, Non-Grignard Mg Electrolyte in Ether-Based Solvents. Sa N; Pan B; Saha-Shah A; Hubaud AA; Vaughey JT; Baker LA; Liao C; Burrell AK ACS Appl Mater Interfaces; 2016 Jun; 8(25):16002-8. PubMed ID: 27255422 [TBL] [Abstract][Full Text] [Related]
7. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
8. Using a Chloride-Free Magnesium Battery Electrolyte to Form a Robust Anode-Electrolyte Nanointerface. Horia R; Nguyen DT; Eng AYS; Seh ZW Nano Lett; 2021 Oct; 21(19):8220-8228. PubMed ID: 34519512 [TBL] [Abstract][Full Text] [Related]
9. Magnesium Anthracene System-Based Electrolyte as a Promoter of High Electrochemical Performance Rechargeable Magnesium Batteries. Hebié S; Alloin F; Iojoiu C; Berthelot R; Leprêtre JC ACS Appl Mater Interfaces; 2018 Feb; 10(6):5527-5533. PubMed ID: 29292985 [TBL] [Abstract][Full Text] [Related]
10. Electrolyte Based on Easily Synthesized, Low Cost Triphenolate-Borohydride Salt for High Performance Mg(TFSI) Hebié S; Ngo HPK; Leprêtre JC; Iojoiu C; Cointeaux L; Berthelot R; Alloin F ACS Appl Mater Interfaces; 2017 Aug; 9(34):28377-28385. PubMed ID: 28792210 [TBL] [Abstract][Full Text] [Related]
11. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Shao Y; Liu T; Li G; Gu M; Nie Z; Engelhard M; Xiao J; Lv D; Wang C; Zhang JG; Liu J Sci Rep; 2013 Nov; 3():3130. PubMed ID: 24185310 [TBL] [Abstract][Full Text] [Related]
12. Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. Ha SY; Lee YW; Woo SW; Koo B; Kim JS; Cho J; Lee KT; Choi NS ACS Appl Mater Interfaces; 2014 Mar; 6(6):4063-73. PubMed ID: 24559269 [TBL] [Abstract][Full Text] [Related]
13. Examining Electrolyte Compatibility on Polymorphic MnO Ye X; Li H; Hatakeyama T; Kobayashi H; Mandai T; Okamoto NL; Ichitsubo T ACS Appl Mater Interfaces; 2022 Dec; 14(51):56685-56696. PubMed ID: 36521016 [TBL] [Abstract][Full Text] [Related]
14. Multifunctional Additives Improve the Electrolyte Properties of Magnesium Borohydride Toward Magnesium-Sulfur Batteries. Xu H; Zhang Z; Li J; Qiao L; Lu C; Tang K; Dong S; Ma J; Liu Y; Zhou X; Cui G ACS Appl Mater Interfaces; 2018 Jul; 10(28):23757-23765. PubMed ID: 29945440 [TBL] [Abstract][Full Text] [Related]
15. Improved Non-Grignard Electrolyte Based on Magnesium Borate Trichloride for Rechargeable Magnesium Batteries. Sato K; Mori G; Kiyosu T; Yaji T; Nakanishi K; Ohta T; Okamoto K; Orikasa Y Sci Rep; 2020 Apr; 10(1):7362. PubMed ID: 32355213 [TBL] [Abstract][Full Text] [Related]
16. Research progress of organic liquid electrolyte for sodium ion battery. Zhang J; Li J; Wang H; Wang M Front Chem; 2023; 11():1253959. PubMed ID: 37780988 [TBL] [Abstract][Full Text] [Related]
17. Critical Role of the Interphase at Magnesium Electrodes in Chloride-Free, Simple Salt Electrolytes. Holc C; Dimogiannis K; Hopkinson E; Johnson LR ACS Appl Mater Interfaces; 2021 Jun; 13(25):29708-29713. PubMed ID: 34143598 [TBL] [Abstract][Full Text] [Related]
18. Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity. Crowe AJ; Stringham KK; Bartlett BM ACS Appl Mater Interfaces; 2016 Sep; 8(35):23060-5. PubMed ID: 27524205 [TBL] [Abstract][Full Text] [Related]
19. Facile and Economic Synthesis of Robust Non-Nucleophilic Electrolyte for High-Performance Rechargeable Magnesium Batteries. Huang X; Wen J; Lei J; Huang G; Pan F; Li L ACS Appl Mater Interfaces; 2022 Feb; 14(7):8906-8915. PubMed ID: 35133809 [TBL] [Abstract][Full Text] [Related]
20. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation. Lu Y; Ni Y; Chen J Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]