These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35642967)

  • 21. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot preparation of double network hydrogels via enzyme-mediated polymerization and post-self-assembly for wound healing.
    Wei Q; Chang Y; Ma G; Zhang W; Wang Q; Hu Z
    J Mater Chem B; 2019 Oct; 7(40):6195-6201. PubMed ID: 31565719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical properties of PNIPAM based hydrogels: A review.
    Haq MA; Su Y; Wang D
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):842-855. PubMed ID: 27770962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reusable self-healing hydrogels realized via in situ polymerization.
    Vivek B; Prasad E
    J Phys Chem B; 2015 Apr; 119(14):4881-7. PubMed ID: 25774447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheology and morphology of pristine graphene/polyacrylamide gels.
    Das S; Irin F; Ma L; Bhattacharia SK; Hedden RC; Green MJ
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8633-40. PubMed ID: 23915342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adhesive and tough hydrogels promoted by quaternary chitosan for strain sensor.
    Wang T; Ren X; Bai Y; Liu L; Wu G
    Carbohydr Polym; 2021 Feb; 254():117298. PubMed ID: 33357866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel self-healing triple physical cross-linked hydrogel for antibacterial dressing.
    Li D; Fei X; Wang K; Xu L; Wang Y; Tian J; Li Y
    J Mater Chem B; 2021 Sep; 9(34):6844-6855. PubMed ID: 34612333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels.
    Zhong M; Liu XY; Shi FK; Zhang LQ; Wang XP; Cheetham AG; Cui H; Xie XM
    Soft Matter; 2015 Jun; 11(21):4235-41. PubMed ID: 25892460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels.
    Rumon MMH; Sarkar SD; Uddin MM; Alam MM; Karobi SN; Ayfar A; Azam MS; Roy CK
    RSC Adv; 2022 Mar; 12(12):7453-7463. PubMed ID: 35424695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-healing zwitterionic sulfobetaine nanocomposite hydrogels with good mechanical properties.
    Lin Y; Zeng Z; Li Y; Sun S; Liu X; He D; Li G
    RSC Adv; 2019 Oct; 9(55):31806-31811. PubMed ID: 35530781
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionically crosslinked chitosan/poly(acrylic acid) hydrogels with high strength, toughness and antifreezing capability.
    Cao J; Wang Y; He C; Kang Y; Zhou J
    Carbohydr Polym; 2020 Aug; 242():116420. PubMed ID: 32564827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel xanthan gum-based conductive hydrogel with excellent mechanical, biocompatible, and self-healing performances.
    Hua D; Gao S; Zhang M; Ma W; Huang C
    Carbohydr Polym; 2020 Nov; 247():116743. PubMed ID: 32829862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Swelling behavior and morphological properties of semi-IPN hydrogels based on ionic and non-ionic components.
    Pulat M; Ozgündüz Hİ
    Biomed Mater Eng; 2014; 24(4):1725-33. PubMed ID: 24948456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An intermolecular quadruple hydrogen-bonding strategy to fabricate self-healing and highly deformable polyurethane hydrogels.
    Lin Y; Li G
    J Mater Chem B; 2014 Oct; 2(39):6878-6885. PubMed ID: 32261884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tough, stretchable and compressive alginate-based hydrogels achieved by non-covalent interactions.
    Jing Z; Dai X; Xian X; Du X; Liao M; Hong P; Li Y
    RSC Adv; 2020 Jun; 10(40):23592-23606. PubMed ID: 35517309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks.
    Wang Z; An G; Zhu Y; Liu X; Chen Y; Wu H; Wang Y; Shi X; Mao C
    Mater Horiz; 2019 May; 6(4):733-742. PubMed ID: 31572613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application.
    Wu X; Sun H; Qin Z; Che P; Yi X; Yu Q; Zhang H; Sun X; Yao F; Li J
    Int J Biol Macromol; 2020 Apr; 149():707-716. PubMed ID: 32014477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.
    Yu R; Zheng S
    J Biomater Sci Polym Ed; 2011; 22(17):2305-24. PubMed ID: 21092421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox-activity of polydopamine for ultrafast preparation of self-healing and adhesive hydrogels.
    Du L; Liao R; Zhang H; Qu X; Hu X
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112469. PubMed ID: 35339902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial cellulose reinforced double-network hydrogels for shape memory strand.
    Hua J; Liu C; Ng PF; Fei B
    Carbohydr Polym; 2021 May; 259():117737. PubMed ID: 33673998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.