These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35643003)

  • 1. Predicting pesticide dissipation half-life intervals in plants with machine learning models.
    Shen Y; Zhao E; Zhang W; Baccarelli AA; Gao F
    J Hazard Mater; 2022 Aug; 436():129177. PubMed ID: 35643003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling pesticide dissipation half-lives in plants with effects of fertilizer application: A flexible simulation tool.
    Li Z
    Sci Total Environ; 2023 Oct; 893():164739. PubMed ID: 37302597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variability of pesticide dissipation half-lives in plants.
    Fantke P; Juraske R
    Environ Sci Technol; 2013 Apr; 47(8):3548-62. PubMed ID: 23521068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating half-lives for pesticide dissipation from plants.
    Fantke P; Gillespie BW; Juraske R; Jolliet O
    Environ Sci Technol; 2014; 48(15):8588-602. PubMed ID: 24968074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures.
    Gao F; Shen Y; Sallach JB; Li H; Liu C; Li Y
    Environ Sci Technol; 2021 Dec; 55(24):16358-16368. PubMed ID: 34859664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar Photodegradation in Pesticide Fate Modeling: Development and Evaluation of the Pesticide Dissipation from Agricultural Land (PeDAL) Model.
    Lyons SM; Hageman KJ
    Environ Sci Technol; 2021 Apr; 55(8):4842-4850. PubMed ID: 33779156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysing half-lives for pesticide dissipation in plants.
    Jacobsen RE; Fantke P; Trapp S
    SAR QSAR Environ Res; 2015; 26(4):325-42. PubMed ID: 25948099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved dissipation kinetic model to estimate permissible pre-harvest residue levels of pesticides in apples.
    Hwang JI; Kim HY; Lee SH; Kwak SY; Zimmerman AR; Kim JE
    Environ Monit Assess; 2018 Jun; 190(7):438. PubMed ID: 29956012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Pesticides Spray on Crops in Agriculture using Machine Learning.
    Indu ; Baghel AS; Bhardwaj A; Ibrahim W
    Comput Intell Neurosci; 2022; 2022():9408535. PubMed ID: 36105633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview on common aspects influencing the dissipation pattern of pesticides: a review.
    Farha W; Abd El-Aty AM; Rahman MM; Shin HC; Shim JH
    Environ Monit Assess; 2016 Dec; 188(12):693. PubMed ID: 27888425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting crop root concentration factors of organic contaminants with machine learning models.
    Gao F; Shen Y; Brett Sallach J; Li H; Zhang W; Li Y; Liu C
    J Hazard Mater; 2022 Feb; 424(Pt B):127437. PubMed ID: 34678561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models.
    Kobayashi Y; Uchida T; Yoshida K
    Environ Toxicol Chem; 2020 Jul; 39(7):1451-1459. PubMed ID: 32274829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation and application of machine learning-based retention time prediction for suspect screening of pesticides and pesticide transformation products in LC-HRMS.
    Feng C; Xu Q; Qiu X; Jin Y; Ji J; Lin Y; Le S; She J; Lu D; Wang G
    Chemosphere; 2021 May; 271():129447. PubMed ID: 33476874
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Li F; Fan D; Wang H; Yang H; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2017 Nov; 6(6):831-842. PubMed ID: 30090546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the spatial distribution of the dengue vector
    Rahman MS; Pientong C; Zafar S; Ekalaksananan T; Paul RE; Haque U; Rocklöv J; Overgaard HJ
    One Health; 2021 Dec; 13():100358. PubMed ID: 34934797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic approaches to machine learning models for predicting pesticide toxicity.
    Anandhi G; Iyapparaja M
    Heliyon; 2024 Apr; 10(7):e28752. PubMed ID: 38576573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree.
    Li K; Shi Q; Liu S; Xie Y; Liu J
    Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pesticide decay in turf: a review of processes and experimental data.
    Magri A; Haith DA
    J Environ Qual; 2009; 38(1):4-12. PubMed ID: 19141790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mulch of plant residues at the soil surface impact the leaching and persistence of pesticides: A modelling study from soil columns.
    Aslam S; Iqbal A; Lafolie F; Recous S; Benoit P; Garnier P
    J Contam Hydrol; 2018 Jul; 214():54-64. PubMed ID: 29871763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.