These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 35643084)

  • 41. De Novo Domestication in the Multi-Omics Era.
    Jian L; Yan J; Liu J
    Plant Cell Physiol; 2022 Nov; 63(11):1592-1606. PubMed ID: 35762778
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Designing Future Crops: Genomics-Assisted Breeding Comes of Age.
    Varshney RK; Bohra A; Yu J; Graner A; Zhang Q; Sorrells ME
    Trends Plant Sci; 2021 Jun; 26(6):631-649. PubMed ID: 33893045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing crop diversity for food security in the face of climate uncertainty.
    Zsögön A; Peres LEP; Xiao Y; Yan J; Fernie AR
    Plant J; 2022 Jan; 109(2):402-414. PubMed ID: 34882870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genome sequencing and transcriptome analyses provide insights into the origin and domestication of water caltrop (Trapa spp., Lythraceae).
    Lu RS; Chen Y; Zhang XY; Feng Y; Comes HP; Li Z; Zheng ZS; Yuan Y; Wang LY; Huang ZJ; Guo Y; Sun GP; Olsen KM; Chen J; Qiu YX
    Plant Biotechnol J; 2022 Apr; 20(4):761-776. PubMed ID: 34861095
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomic approaches for studying crop evolution.
    Schreiber M; Stein N; Mascher M
    Genome Biol; 2018 Sep; 19(1):140. PubMed ID: 30241487
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR/Cas systems: opportunities and challenges for crop breeding.
    Biswas S; Zhang D; Shi J
    Plant Cell Rep; 2021 Jun; 40(6):979-998. PubMed ID: 33977326
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular mapping and identification of quantitative trait loci for domestication traits in the field cress (Lepidium campestre L.) genome.
    Desta ZA; de Koning DJ; Ortiz R
    Heredity (Edinb); 2020 Apr; 124(4):579-591. PubMed ID: 32076125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition.
    Dawson IK; Powell W; Hendre P; Bančič J; Hickey JM; Kindt R; Hoad S; Hale I; Jamnadass R
    New Phytol; 2019 Oct; 224(1):37-54. PubMed ID: 31063598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accelerated Domestication of New Crops: Yield is Key.
    Luo G; Najafi J; Correia PMP; Trinh MDL; Chapman EA; Østerberg JT; Thomsen HC; Pedas PR; Larson S; Gao C; Poland J; Knudsen S; DeHaan L; Palmgren M
    Plant Cell Physiol; 2022 Nov; 63(11):1624-1640. PubMed ID: 35583202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Back to the Origins: Background and Perspectives of Grapevine Domestication.
    Grassi F; De Lorenzis G
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing.
    Kumar K; Mandal SN; Pradhan B; Kaur P; Kaur K; Neelam K
    Plant Cell Physiol; 2022 Nov; 63(11):1607-1623. PubMed ID: 36018059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MADS-box genes and crop domestication: the jack of all traits.
    Schilling S; Pan S; Kennedy A; Melzer R
    J Exp Bot; 2018 Mar; 69(7):1447-1469. PubMed ID: 29474735
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.
    Bohra A; Jha UC; Kishor PB; Pandey S; Singh NP
    Biotechnol Adv; 2014 Dec; 32(8):1410-28. PubMed ID: 25196916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-based breeding approaches in major vegetable crops.
    Hao N; Han D; Huang K; Du Y; Yang J; Zhang J; Wen C; Wu T
    Theor Appl Genet; 2020 May; 133(5):1739-1752. PubMed ID: 31728564
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reloading DNA History in Rice Domestication.
    Izawa T
    Plant Cell Physiol; 2022 Nov; 63(11):1529-1539. PubMed ID: 35656860
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unintended Consequences of Plant Domestication.
    Singh J; van der Knaap E
    Plant Cell Physiol; 2022 Nov; 63(11):1573-1583. PubMed ID: 35715986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrating multi-omics data for crop improvement.
    Scossa F; Alseekh S; Fernie AR
    J Plant Physiol; 2021 Feb; 257():153352. PubMed ID: 33360148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genetics and consequences of crop domestication.
    Flint-Garcia SA
    J Agric Food Chem; 2013 Sep; 61(35):8267-76. PubMed ID: 23718780
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication.
    Avni R; Nave M; Barad O; Baruch K; Twardziok SO; Gundlach H; Hale I; Mascher M; Spannagl M; Wiebe K; Jordan KW; Golan G; Deek J; Ben-Zvi B; Ben-Zvi G; Himmelbach A; MacLachlan RP; Sharpe AG; Fritz A; Ben-David R; Budak H; Fahima T; Korol A; Faris JD; Hernandez A; Mikel MA; Levy AA; Steffenson B; Maccaferri M; Tuberosa R; Cattivelli L; Faccioli P; Ceriotti A; Kashkush K; Pourkheirandish M; Komatsuda T; Eilam T; Sela H; Sharon A; Ohad N; Chamovitz DA; Mayer KFX; Stein N; Ronen G; Peleg Z; Pozniak CJ; Akhunov ED; Distelfeld A
    Science; 2017 Jul; 357(6346):93-97. PubMed ID: 28684525
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A route to de novo domestication of wild allotetraploid rice.
    Yu H; Lin T; Meng X; Du H; Zhang J; Liu G; Chen M; Jing Y; Kou L; Li X; Gao Q; Liang Y; Liu X; Fan Z; Liang Y; Cheng Z; Chen M; Tian Z; Wang Y; Chu C; Zuo J; Wan J; Qian Q; Han B; Zuccolo A; Wing RA; Gao C; Liang C; Li J
    Cell; 2021 Mar; 184(5):1156-1170.e14. PubMed ID: 33539781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.