These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 35643426)

  • 1. De novo transcriptome assembly of the cotyledon of Camellia oleifera for discovery of genes regulating seed germination.
    Long W; Yao X; Wang K; Sheng Y; Lv L
    BMC Plant Biol; 2022 May; 22(1):265. PubMed ID: 35643426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 3. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptomic Analyses of
    Wu L; Li J; Li Z; Zhang F; Tan X
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32013013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch).
    Kanjana W; Suzuki T; Ishii K; Kozaki T; Iigo M; Yamane K
    BMC Genomics; 2016 Aug; 17():575. PubMed ID: 27501791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
    Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y
    PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Camellia oleifera transcriptome reveals key pathways and hub genes involved during different photoperiods.
    Yan J; He J; Li J; Ren S; Wang Y; Zhou J; Tan X
    BMC Plant Biol; 2022 Sep; 22(1):435. PubMed ID: 36089577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome profiles revealed molecular mechanisms of alternating temperatures in breaking the epicotyl morphophysiological dormancy of Polygonatum sibiricum seeds.
    Liao D; An R; Wei J; Wang D; Li X; Qi J
    BMC Plant Biol; 2021 Aug; 21(1):370. PubMed ID: 34384392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera.
    He Z; Liu C; Wang X; Wang R; Tian Y; Chen Y
    Biochem Genet; 2021 Apr; 59(2):398-421. PubMed ID: 33040171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying.
    Feng JL; Yang ZJ; Chen SP; El-Kassaby YA; Chen H
    BMC Genomics; 2017 Jul; 18(1):546. PubMed ID: 28728593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary transcriptome and proteome profiling in the mature seeds of Camellia oleifera from Hainan Island.
    Ye Z; Wu Y; Ul Haq Muhammad Z; Yan W; Yu J; Zhang J; Yao G; Hu X
    PLoS One; 2020; 15(2):e0226888. PubMed ID: 32027663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Transcriptome and Metabolome Analysis Reveals Key Metabolites Involved in
    Yang C; Wu P; Yao X; Sheng Y; Zhang C; Lin P; Wang K
    Int J Mol Sci; 2022 Jan; 23(1):. PubMed ID: 35008957
    [No Abstract]   [Full Text] [Related]  

  • 16. Transcriptome analysis of Cinnamomum migao seed germination in medicinal plants of Southwest China.
    Huang X; Tian T; Chen J; Wang D; Tong B; Liu J
    BMC Plant Biol; 2021 Jun; 21(1):270. PubMed ID: 34116632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.
    Silva AT; Ligterink W; Hilhorst HWM
    Plant Mol Biol; 2017 Nov; 95(4-5):481-496. PubMed ID: 29046998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination.
    Wang L; Wang HL; Yin L; Tian CY
    BMC Genomics; 2017 Oct; 18(1):806. PubMed ID: 29052505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Mapping Combined with a Transcriptome Analysis to Screen for Candidate Genes Responsive to Abscisic Acid Treatment in
    Di F; Wang T; Ding Y; Chen X; Wang H; Li J; Liu L
    DNA Cell Biol; 2020 Apr; 39(4):533-547. PubMed ID: 32031882
    [No Abstract]   [Full Text] [Related]  

  • 20. Development and cross-species transferability of unigene-derived microsatellite markers in an edible oil woody plant, Camellia oleifera (Theaceae).
    Jia BG; Lin Q; Feng YZ; Hu XY; Tan XF; Shao FG; Zhang L
    Genet Mol Res; 2015 Jun; 14(2):6906-16. PubMed ID: 26125898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.