BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35643572)

  • 1. Elaborate design of shell component for manipulating the sustained release behavior from core-shell nanofibres.
    Liu Y; Chen X; Gao Y; Yu DG; Liu P
    J Nanobiotechnology; 2022 May; 20(1):244. PubMed ID: 35643572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release.
    Yang Y; Chang S; Bai Y; Du Y; Yu DG
    Carbohydr Polym; 2020 Sep; 243():116477. PubMed ID: 32532400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanosized sustained-release drug depots fabricated using modified tri-axial electrospinning.
    Yang GZ; Li JJ; Yu DG; He MF; Yang JH; Williams GR
    Acta Biomater; 2017 Apr; 53():233-241. PubMed ID: 28137657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun PVP-Core/PHBV-Shell Fibers to Eliminate Tailing Off for an Improved Sustained Release of Curcumin.
    Liu Y; Chen X; Yu DG; Liu H; Liu Y; Liu P
    Mol Pharm; 2021 Nov; 18(11):4170-4178. PubMed ID: 34582196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun fibers with blank surface and inner drug gradient for improving sustained release.
    Wang M; Ge RL; Zhang F; Yu DG; Liu ZP; Li X; Shen H; Williams GR
    Biomater Adv; 2023 Jul; 150():213404. PubMed ID: 37060792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Porous Core-Shell Poly L-Lactic Acid/Polyethylene Glycol Superfine Fibres Containing Drug.
    Yang W; He N; Fu J; Li Z; Ji X
    J Nanosci Nanotechnol; 2015 Dec; 15(12):9911-7. PubMed ID: 26682434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Drug Heterogeneous Distributions within Core-Sheath Nanostructures on Its Sustained Release Profiles.
    Xu H; Xu X; Li S; Song WL; Yu DG; Annie Bligh SW
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning.
    Huang CK; Zhang K; Gong Q; Yu DG; Wang J; Tan X; Quan H
    Int J Biol Macromol; 2020 Jun; 152():68-76. PubMed ID: 32097744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique.
    Yu H; Jia Y; Yao C; Lu Y
    Int J Pharm; 2014 Jul; 469(1):17-22. PubMed ID: 24751343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun Blank Nanocoating for Improved Sustained Release Profiles from Medicated Gliadin Nanofibers.
    Liu X; Shao W; Luo M; Bian J; Yu DG
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29565280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning.
    Yang Y; Li W; Yu DG; Wang G; Williams GR; Zhang Z
    Carbohydr Polym; 2019 Jan; 203():228-237. PubMed ID: 30318208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of electrospun crystal-based and composite-based drug nano depots.
    Wang K; Wang P; Wang M; Yu DG; Wan F; Bligh SWA
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110988. PubMed ID: 32487398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.
    Yang YY; Liu ZP; Yu DG; Wang K; Liu P; Chen X
    Int J Nanomedicine; 2018; 13():2395-2404. PubMed ID: 29713169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanofiber-based drug depot with high drug loading for sustained release.
    Hou J; Yang J; Zheng X; Wang M; Liu Y; Yu DG
    Int J Pharm; 2020 Jun; 583():119397. PubMed ID: 32376443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior.
    Xu Y; Li JJ; Yu DG; Williams GR; Yang JH; Wang X
    Eur J Pharm Sci; 2017 Aug; 106():422-430. PubMed ID: 28614732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun Core-Sheath Nanofibers with Variable Shell Thickness for Modifying Curcumin Release to Achieve a Better Antibacterial Performance.
    Liu Y; Chen X; Gao Y; Liu Y; Yu D; Liu P
    Biomolecules; 2022 Jul; 12(8):. PubMed ID: 36008951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospinning of artemisinin-loaded core-shell fibers for inhibiting drug re-crystallization.
    Shi Y; Zhang J; Xu S; Dong A
    J Biomater Sci Polym Ed; 2013; 24(5):551-64. PubMed ID: 23565867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release.
    Shamsipour M; Mansouri AM; Moradipour P
    AAPS PharmSciTech; 2019 Jul; 20(7):259. PubMed ID: 31332574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel combination of non-invasive morphological and solid-state characterisation of drug-loaded core-shell electrospun fibres.
    Kazsoki A; Farkas A; Balogh-Weiser D; Mancuso E; Sharma PK; Lamprou DA; Zelkó R
    Int J Pharm; 2020 Sep; 587():119706. PubMed ID: 32739390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug.
    Liu Y; Chen X; Liu Y; Gao Y; Liu P
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.