These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
373 related articles for article (PubMed ID: 35643735)
1. Update on the pathogenesis of vitiligo. Marchioro HZ; Silva de Castro CC; Fava VM; Sakiyama PH; Dellatorre G; Miot HA An Bras Dermatol; 2022; 97(4):478-490. PubMed ID: 35643735 [TBL] [Abstract][Full Text] [Related]
2. Treatment update for vitiligo based on autoimmune inhibition and melanocyte protection. Xie B; Zhu Y; Shen Y; Xu W; Song X Expert Opin Ther Targets; 2023 Mar; 27(3):189-206. PubMed ID: 36947026 [TBL] [Abstract][Full Text] [Related]
3. Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity. Wang Y; Li S; Li C Med Sci Monit; 2019 Feb; 25():1017-1023. PubMed ID: 30723188 [TBL] [Abstract][Full Text] [Related]
4. Vitiligo: interplay between oxidative stress and immune system. Laddha NC; Dwivedi M; Mansuri MS; Gani AR; Ansarullah M; Ramachandran AV; Dalai S; Begum R Exp Dermatol; 2013 Apr; 22(4):245-50. PubMed ID: 23425123 [TBL] [Abstract][Full Text] [Related]
5. The enigma and challenges of vitiligo pathophysiology and treatment. Abdel-Malek ZA; Jordan C; Ho T; Upadhyay PR; Fleischer A; Hamzavi I Pigment Cell Melanoma Res; 2020 Nov; 33(6):778-787. PubMed ID: 32198977 [TBL] [Abstract][Full Text] [Related]
6. Research progress of vitiligo repigmentation: from oxidative stress to autoimmunity. Yu T; Wu Y; Lu Z Cell Mol Biol (Noisy-le-grand); 2024 Apr; 70(4):147-151. PubMed ID: 38678613 [TBL] [Abstract][Full Text] [Related]
7. Occludin Promotes Adhesion of CD8 Zou P; Xiao Y; Deng Q; Shi Y; You R; Pi Z; Liu J; Zhan Y; Zeng Q; Zeng Z; Xiao R Oxid Med Cell Longev; 2022; 2022():6732972. PubMed ID: 35222802 [TBL] [Abstract][Full Text] [Related]
8. Membranal Expression of Calreticulin Induced by Unfolded Protein Response in Melanocytes: A Mechanism Underlying Oxidative Stress-Induced Autoimmunity in Vitiligo. Song P; Zhang W; Guo S; Wang G; Gao T; Li C; Liu L J Invest Dermatol; 2024 Jul; 144(7):1622-1632.e5. PubMed ID: 38246583 [TBL] [Abstract][Full Text] [Related]
9. The Role of the NKG2D in Vitiligo. Plaza-Rojas L; Guevara-Patiño JA Front Immunol; 2021; 12():624131. PubMed ID: 33717132 [TBL] [Abstract][Full Text] [Related]
10. A Concise Review on the Role of Endoplasmic Reticulum Stress in the Development of Autoimmunity in Vitiligo Pathogenesis. Jadeja SD; Mayatra JM; Vaishnav J; Shukla N; Begum R Front Immunol; 2020; 11():624566. PubMed ID: 33613564 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of melanocyte death in vitiligo. Chen J; Li S; Li C Med Res Rev; 2021 Mar; 41(2):1138-1166. PubMed ID: 33200838 [TBL] [Abstract][Full Text] [Related]
12. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Ma J; Li S; Zhu L; Guo S; Yi X; Cui T; He Y; Chang Y; Liu B; Li C; Jian Z Free Radic Biol Med; 2018 Dec; 129():492-503. PubMed ID: 30342186 [TBL] [Abstract][Full Text] [Related]
13. Dysfunction of Autophagy: A Possible Mechanism Involved in the Pathogenesis of Vitiligo by Breaking the Redox Balance of Melanocytes. Qiao Z; Wang X; Xiang L; Zhang C Oxid Med Cell Longev; 2016; 2016():3401570. PubMed ID: 28018522 [TBL] [Abstract][Full Text] [Related]
14. Autoimmunity in vitiligo: Therapeutic implications and opportunities. Khaitan BK; Sindhuja T Autoimmun Rev; 2022 Jan; 21(1):102932. PubMed ID: 34506987 [TBL] [Abstract][Full Text] [Related]
15. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Faraj S; Kemp EH; Gawkrodger DJ Clin Exp Immunol; 2022 Jan; 207(1):27-43. PubMed ID: 35020865 [TBL] [Abstract][Full Text] [Related]
16. Oxidative Stress-Induced HMGB1 Release from Melanocytes: A Paracrine Mechanism Underlying the Cutaneous Inflammation in Vitiligo. Cui T; Zhang W; Li S; Chen X; Chang Y; Yi X; Kang P; Yang Y; Chen J; Liu L; Jian Z; Li K; Wang G; Gao T; Song P; Li C J Invest Dermatol; 2019 Oct; 139(10):2174-2184.e4. PubMed ID: 30998983 [TBL] [Abstract][Full Text] [Related]
17. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications. Chang WL; Ko CH Cells; 2023 Mar; 12(6):. PubMed ID: 36980277 [TBL] [Abstract][Full Text] [Related]
18. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Li XS; Tang XY; Su W; Li X Immunopharmacol Immunotoxicol; 2020 Dec; 42(6):594-603. PubMed ID: 33045867 [TBL] [Abstract][Full Text] [Related]
19. Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Tarlé RG; Silva de Castro CC; do Nascimento LM; Mira MT Exp Dermatol; 2015 Apr; 24(4):300-2. PubMed ID: 25613741 [TBL] [Abstract][Full Text] [Related]
20. Immunometabolism in the pathogenesis of vitiligo. Lyu C; Sun Y Front Immunol; 2022; 13():1055958. PubMed ID: 36439174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]