These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The effect of delayed dehydration of carbonic acid on renal bicarbonate clearance, and its significance for acid-base balance. Reid EL; Hills AG Clin Sci; 1969 Oct; 37(2):381-93. PubMed ID: 4982627 [No Abstract] [Full Text] [Related]
7. Relationship of urinary and blood carbon dioxide tension during hypercapnia in the rat. Its significance in the evaluation of collecting duct hydrogen ion secretion. Batlle DC; Downer M; Gutterman C; Kurtzman NA J Clin Invest; 1985 May; 75(5):1517-30. PubMed ID: 2987305 [TBL] [Abstract][Full Text] [Related]
8. Luminal pH in the amphibian distal tubule: effects of carbonic anhydrase and carbonic anhydrase inhibitors. Planelles G; Discala F; Anagnostopoulos T Am J Physiol; 1992 Dec; 263(6 Pt 2):R1254-9. PubMed ID: 1481935 [TBL] [Abstract][Full Text] [Related]
10. Renal regulation of acid-base balance. Rector FC Aust N Z J Med; 1981; 11(Suppl 1):1-5. PubMed ID: 6789807 [No Abstract] [Full Text] [Related]
11. PCO2 and PNH3 in mammalian kidney and urinary tract related to urine pH and flow. Hills AG; Reid EL Am J Physiol; 1970 Aug; 219(2):423-34. PubMed ID: 4988559 [No Abstract] [Full Text] [Related]
12. [Bicarbonate reabsorption and carbonic anhydrase activity in diseased kidneys in humans]. Hodler J Helv Med Acta; 1963 Nov; 30(4):575-92. PubMed ID: 4964541 [No Abstract] [Full Text] [Related]
13. H+ secretion in distal tubules: the effect of carbonic anhydrase in luminal perfusates. Rebouças NA; Malnic G Braz J Med Biol Res; 1987; 20(2):277-83. PubMed ID: 3120842 [TBL] [Abstract][Full Text] [Related]
14. Urinary acidification and electrolyte excretion in renal hypertensive rats. Guignard JP; Filloux B; Peters G Nephron; 1970; 7(5):430-46. PubMed ID: 4993939 [No Abstract] [Full Text] [Related]
15. Disequilibrium pH and bicarbonate reabsorption: relevance to the pathogenesis of distal renal tubular acidosis. Stinebaugh BJ; Ghafary E; Goldstein MB; Halperin ML; Schloeder FX; Suki WN Nephron; 1978; 20(3):141-6. PubMed ID: 24188 [TBL] [Abstract][Full Text] [Related]
16. A phenomenologic evaluation of CO2-diffusion restriction in kidney tubules studied in an artificial membrane system. Sohtell M Acta Physiol Scand; 1979 Feb; 105(2):129-36. PubMed ID: 33533 [TBL] [Abstract][Full Text] [Related]
17. THE MECHANISM OF BICARBONATE REABSORPTION IN THE PROXIMAL AND DISTAL TUBULES OF THE KIDNEY. RECTOR FC; CARTER NW; SELDIN DW J Clin Invest; 1965 Feb; 44(2):278-90. PubMed ID: 14260168 [No Abstract] [Full Text] [Related]
18. Observations on the rates of ion movement and hypercapnia in aqueous humor. Maren TH Exp Eye Res; 1973 Aug; 16(5):403-11. PubMed ID: 4200364 [No Abstract] [Full Text] [Related]
19. Delayed pH equilibration in blood during carbonic anhydrase inhibition. Crandall ED; Bidani A; Forster RE Adv Exp Med Biol; 1978; 99():243-54. PubMed ID: 29461 [No Abstract] [Full Text] [Related]
20. The absence of renal bicarbonate reabsorption maxima during carbonic anhydrase inhibition. Garg LC J Pharmacol Exp Ther; 1975 Jul; 194(1):96-102. PubMed ID: 239223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]