These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35644014)
1. Siderophores of Bacillus pumilus promote 2-keto-L-gulonic acid production in a vitamin C microbial fermentation system. Zhang Q; Lin Y; Shen G; Zhang H; Lyu S J Basic Microbiol; 2022 Jul; 62(7):833-842. PubMed ID: 35644014 [TBL] [Abstract][Full Text] [Related]
2. 2-Keto-L-gulonic acid inhibits the growth of Bacillus pumilus and Ketogulonicigenium vulgare. Zhang Q; Lyu S World J Microbiol Biotechnol; 2023 Jul; 39(10):257. PubMed ID: 37474882 [TBL] [Abstract][Full Text] [Related]
3. Rhodotorula mucilaginosa A8, a potential helper strain in a vitamin C microbial fermentation process. Zhang Q; Liao L; Lyu S J Basic Microbiol; 2024 Jul; 64(7):e2400132. PubMed ID: 38751099 [TBL] [Abstract][Full Text] [Related]
4. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy. Yang W; Sun H; Dong D; Ma S; Mandlaa ; Wang Z; Xu H Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708 [TBL] [Abstract][Full Text] [Related]
5. Microbial Interactions in a Vitamin C Industrial Fermentation System: Novel Insights and Perspectives. Zhang Q; Lyu S Appl Environ Microbiol; 2022 Sep; 88(18):e0121222. PubMed ID: 36073939 [TBL] [Abstract][Full Text] [Related]
6. L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation. Mandlaa ; Yang W; Liu C; Xu H J Ind Microbiol Biotechnol; 2015 Jun; 42(6):897-904. PubMed ID: 25860124 [TBL] [Abstract][Full Text] [Related]
7. Enhanced 2-keto-L-gulonic acid production by applying L-sorbose-tolerant helper strain in the co-culture system. Mandlaa ; Sun Z; Wang R; Han X; Xu H; Yang W AMB Express; 2018 Feb; 8(1):30. PubMed ID: 29492704 [TBL] [Abstract][Full Text] [Related]
8. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Wang P; Zeng W; Du G; Zhou J; Chen J J Biotechnol; 2019 Aug; 301():24-34. PubMed ID: 31136757 [TBL] [Abstract][Full Text] [Related]
9. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation. Liu L; Chen K; Zhang J; Liu J; Chen J J Biotechnol; 2011 Dec; 156(3):182-7. PubMed ID: 21924300 [TBL] [Abstract][Full Text] [Related]
10. Spaceflight-induced enhancement of 2-keto-L-gulonic acid production by a mixed culture of Ketogulonigenium vulgare and Bacillus thuringiensis. Yang W; Han L; Mandlaa M; Chen H; Jiang M; Zhang Z; Xu H Lett Appl Microbiol; 2013 Jul; 57(1):54-62. PubMed ID: 23581457 [TBL] [Abstract][Full Text] [Related]
11. A plate method for rapid screening of Ketogulonicigenium vulgare mutants for enhanced 2-keto-l-gulonic acid production. Yang W; Han L; Mandlaa M; Zhang H; Zhang Z; Xu H Braz J Microbiol; 2017; 48(3):397-402. PubMed ID: 28292630 [TBL] [Abstract][Full Text] [Related]
12. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium. Chen S; Jia N; Ding MZ; Yuan YJ J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1507-1516. PubMed ID: 27565673 [TBL] [Abstract][Full Text] [Related]
13. Two-helper-strain co-culture system: a novel method for enhancement of 2-keto-L-gulonic acid production. Mandlaa ; Yang W; Han L; Wang Z; Xu H Biotechnol Lett; 2013 Nov; 35(11):1853-7. PubMed ID: 23881329 [TBL] [Abstract][Full Text] [Related]
14. iTRAQ-based proteomics analysis of Zhang Q; Lyu S Front Microbiol; 2023; 14():1131000. PubMed ID: 37025640 [TBL] [Abstract][Full Text] [Related]
15. [Enhancement of 2-keto-L-gulonic acid production using three-stage pH control strategy]. Zhang J; Zhou J; Liu L; Liu J; Chen K; Du G; Chen J Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1263-8. PubMed ID: 21141117 [TBL] [Abstract][Full Text] [Related]
16. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-L-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Du J; Bai W; Song H; Yuan YJ Metab Eng; 2013 Sep; 19():50-6. PubMed ID: 23747604 [TBL] [Abstract][Full Text] [Related]
17. Combined engineering of l-sorbose dehydrogenase and fermentation optimization to increase 2-keto-l-gulonic acid production in Escherichia coli. Li D; Wang X; Qin Z; Yu S; Chen J; Zhou J Bioresour Technol; 2023 Mar; 372():128672. PubMed ID: 36702324 [TBL] [Abstract][Full Text] [Related]
18. Glutathione enhances 2-keto-l-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663. Huang Z; Zou W; Liu J; Liu L J Biotechnol; 2013 Apr; 164(4):454-60. PubMed ID: 23376843 [TBL] [Abstract][Full Text] [Related]
19. Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis. Wang Y; Li H; Liu Y; Zhou M; Ding M; Yuan Y Synth Syst Biotechnol; 2022 Mar; 7(1):481-489. PubMed ID: 34977392 [TBL] [Abstract][Full Text] [Related]
20. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid biosynthesis. Zhu Y; Liu J; Du G; Zhou J; Chen J Bioresour Technol; 2012 Mar; 107():399-404. PubMed ID: 22257860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]