BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35644023)

  • 1. A Monte Carlo study of the relative biological effectiveness in surface brachytherapy.
    Valdes-Cortez C; Niatsetski Y; Perez-Calatayud J; Ballester F; Vijande J
    Med Phys; 2022 Aug; 49(8):5576-5588. PubMed ID: 35644023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of spherical applicator diameter on relative biologic effectiveness of low energy IORT X-rays: A hybrid Monte Carlo study.
    Shamsabadi R; Baghani HR; Azadegan B; Mowlavi AA
    Phys Med; 2020 Dec; 80():297-307. PubMed ID: 33246189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A formalism for traceable dosimetry in superficial electronic brachytherapy (eBT).
    de Prez L; Avilés Lucas P; Kok E
    Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37451251
    [No Abstract]   [Full Text] [Related]  

  • 4. On the use of the absorbed depth-dose measurements in the beam calibration of a surface electronic high-dose-rate brachytherapy unit, a Monte Carlo-based study.
    Valdes-Cortez C; Niatsetski Y; Ballester F; Vijande J; Candela-Juan C; Perez-Calatayud J
    Med Phys; 2020 Feb; 47(2):693-702. PubMed ID: 31722113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the relative biological effectiveness of low energy electronic brachytherapy sources in breast tissue: a Monte Carlo study.
    White SA; Reniers B; de Jong EE; Rusch T; Verhaegen F
    Phys Med Biol; 2016 Jan; 61(1):383-99. PubMed ID: 26674746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monte Carlo-based dosimetric characterization of Esteya
    Valdes-Cortez C; Niatsetski Y; Perez-Calatayud J; Ballester F; Vijande J
    Med Phys; 2019 Jan; 46(1):356-369. PubMed ID: 30390317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of
    Safigholi H; Meigooni AS; Song WY
    Med Phys; 2017 Sep; 44(9):4426-4436. PubMed ID: 28494095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characterization of flattening filter for high dose rate
    Ghobadi P; Farhood B; Ghorbani M; Mohseni M
    Comput Biol Med; 2020 Aug; 123():103878. PubMed ID: 32658791
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Hadadi A; Ghanavati S
    Appl Radiat Isot; 2023 Jul; 197():110786. PubMed ID: 37023694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of bone dose arising from skin cancer brachytherapy: A comparison between
    Sheikholeslami S; Khodaverdian S; Hashemzaei F; Ghobadi P; Ghorbani M; Farhood B
    Comput Methods Programs Biomed; 2021 Jun; 205():106089. PubMed ID: 33862569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of a HDR skin applicator with flattening filter.
    Granero D; Pérez-Calatayud J; Gimeno J; Ballester F; Casal E; Crispín V; van der Laarse R
    Med Phys; 2008 Feb; 35(2):495-503. PubMed ID: 18383670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dosimetric study of Leipzig applicators.
    Pérez-Calatayud J; Granero D; Ballester F; Puchades V; Casal E; Soriano A; Crispín V
    Int J Radiat Oncol Biol Phys; 2005 Jun; 62(2):579-84. PubMed ID: 15890603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate
    Ma Y; Vijande J; Ballester F; Tedgren ÅC; Granero D; Haworth A; Mourtada F; Fonseca GP; Zourari K; Papagiannis P; Rivard MJ; Siebert FA; Sloboda RS; Smith R; Chamberland MJP; Thomson RM; Verhaegen F; Beaulieu L
    Med Phys; 2017 Nov; 44(11):5961-5976. PubMed ID: 28722180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correction factors for ionization chamber measurements with the 'Valencia' and 'large field Valencia' brachytherapy applicators.
    Gimenez-Alventosa V; Gimenez V; Ballester F; Vijande J; Andreo P
    Phys Med Biol; 2018 Jun; 63(12):125004. PubMed ID: 29726409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya
    Valdes-Cortez C; Ballester F; Vijande J; Gimenez V; Gimenez-Alventosa V; Perez-Calatayud J; Niatsetski Y; Andreo P
    Phys Med Biol; 2020 Dec; 65(24):. PubMed ID: 32464622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact assessment of breast glandularity on relative biological effectiveness of low energy IORT X-rays through Monte Carlo simulation.
    Shamsabadi R; Baghani HR
    Comput Methods Programs Biomed; 2021 Sep; 208():106246. PubMed ID: 34218169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdosimetric Evaluation of Current and Alternative Brachytherapy Sources-A Geant4-DNA Simulation Study.
    Famulari G; Pater P; Enger SA
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):270-277. PubMed ID: 29102279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of tetrahedral mesh geometries in Monte Carlo simulation of applicator based brachytherapy dose distributions.
    Fonseca GP; Landry G; White S; D'Amours M; Yoriyaz H; Beaulieu L; Reniers B; Verhaegen F
    Phys Med Biol; 2014 Oct; 59(19):5921-35. PubMed ID: 25210788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward 3D dose verification of an electronic brachytherapy source with a plastic scintillation detector.
    Georgi P; Kertzscher G; Nyvang L; Šolc J; Schneider T; Tanderup K; Johansen JG
    Med Phys; 2022 May; 49(5):3432-3443. PubMed ID: 35196404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break.
    Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ
    Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.