These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35644099)

  • 1. Acoustic emission signals analysis to differentiate the damage mechanism in the drilling of Al-5%B
    Thirukkumaran K; Mukhopadhyay CK
    Ultrasonics; 2022 Aug; 124():106762. PubMed ID: 35644099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals.
    Ferrando Chacón JL; Fernández de Barrena T; García A; Sáez de Buruaga M; Badiola X; Vicente J
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier.
    May Z; Alam MK; Nayan NA; Rahman NAA; Mahmud MS
    PLoS One; 2021; 16(12):e0261040. PubMed ID: 34914761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic properties of fracture of dental restorative materials and endocrown restorations under quasi-static loading.
    Skalskyi V; Makeev V; Stankevych O; Dubytskyi O
    Dent Mater; 2020 May; 36(5):617-625. PubMed ID: 32299664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic emission detection for mass fractions of materials based on wavelet packet technology.
    Wang X; Xiang J; Hu H; Xie W; Li X
    Ultrasonics; 2015 Jul; 60():27-32. PubMed ID: 25737229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the Machinability of Carbon Fiber Composite Materials in Function of Tool Wear and Cutting Parameters Using the Artificial Neural Network Approach.
    Feito N; Muñoz-Sánchez A; Díaz-Álvarez A; Loya JA
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Investigation of Suitable Cutting Conditions of Dry Drilling into High-Strength Structural Steel.
    Pelikán L; Slaný M; Beránek L; Andronov V; Nečas M; Čepová L
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using AE Signals to Investigate the Fracture Process in an Al-Ti Laminate.
    Świt G; Krampikowska A; Pała T; Lipiec S; Dzioba I
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32610463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations.
    Zhang C; Yao X; Zhang J; Jin H
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27258277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Possibility of Applying Acoustic Emission and Dynamometric Methods for Monitoring the Turning Process.
    Dudzik K; Labuda W
    Materials (Basel); 2020 Jun; 13(13):. PubMed ID: 32629870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Information theory filters for wavelet packet coefficient selection with application to corrosion type identification from acoustic emission signals.
    Van Dijck G; Van Hulle MM
    Sensors (Basel); 2011; 11(6):5695-715. PubMed ID: 22163921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on Wavelet Packet Energy Characteristics on Friction Signal of Lapping with the Fixed Abrasive Pad.
    Wang Z; Zhang Z; Wang S; Pang M; Ma L; Su J
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning.
    Ahmad S; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tool Wear and Surface Evaluation in Drilling Fly Ash Geopolymer Using HSS, HSS-Co, and HSS-TiN Cutting Tools.
    Ghazali MF; Abdullah MMAB; Abd Rahim SZ; Gondro J; Pietrusiewicz P; Garus S; Stachowiak T; Sandu AV; Mohd Tahir MF; Korkmaz ME; Osman MS
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33810517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The comparison of the extraction of beta wave from EEG between FFT and wavelet transform].
    Wang H; Qian Z; Li H; Chen C; Ding S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):704-9. PubMed ID: 24059040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Noise Reduction Approach of Acoustic Emission (AE) Signals in the SiC Lapping Process on Fixed Abrasive Pads.
    Lin J; Chen J; Lin W; He A; Hao X; Jiang Z; Wang W; Wang B; Wang K; Wei Y; Sun T
    Micromachines (Basel); 2024 Jul; 15(7):. PubMed ID: 39064411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. System for Tool-Wear Condition Monitoring in CNC Machines under Variations of Cutting Parameter Based on Fusion Stray Flux-Current Processing.
    Jaen-Cuellar AY; Osornio-Ríos RA; Trejo-Hernández M; Zamudio-Ramírez I; Díaz-Saldaña G; Pacheco-Guerrero JP; Antonino-Daviu JA
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification.
    Uyulan C; Ergüzel TT; Tarhan N
    Biomed Tech (Berl); 2019 Sep; 64(5):529-542. PubMed ID: 30849042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence-Based Hole Quality Prediction in Micro-Drilling Using Multiple Sensors.
    Ranjan J; Patra K; Szalay T; Mia M; Gupta MK; Song Q; Krolczyk G; Chudy R; Pashnyov VA; Pimenov DY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Experimental Assessment Using Acoustic Emission Sensors to Effectively Detect Surface Deterioration on Steel Plates.
    Angelopoulos N; Kappatos V
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.