These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35644122)

  • 21. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    J Hazard Mater; 2011 Oct; 194():378-84. PubMed ID: 21872390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable regeneration of high-performance LiCoO
    Kong L; Li Z; Zhu W; Ratwani CR; Fernando N; Karunarathne S; Abdelkader AM; Kamali AR; Shi Z
    J Colloid Interface Sci; 2023 Jun; 640():1080-1088. PubMed ID: 36931011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective and environmentally friendly recycling process designed for LiCoO
    Nayaka GP; Zhang Y; Dong P; Wang D; Pai KV; Manjanna J; Santhosh G; Duan J; Zhou Z; Xiao J
    Waste Manag; 2018 Aug; 78():51-57. PubMed ID: 32559940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride.
    Nshizirungu T; Rana M; Jo YT; Park JH
    J Hazard Mater; 2020 Sep; 396():122667. PubMed ID: 32361298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication.
    Chen X; Kang D; Li J; Zhou T; Ma H
    J Hazard Mater; 2020 May; 389():121887. PubMed ID: 31843403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extraction of Co and Li
    Zhao J; Qu X; Qu J; Zhang B; Ning Z; Xie H; Zhou X; Song Q; Xing P; Yin H
    J Hazard Mater; 2019 Nov; 379():120817. PubMed ID: 31276922
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water.
    Nshizirungu T; Agarwal A; Jo YT; Rana M; Shin D; Park JH
    J Hazard Mater; 2020 Jul; 393():122367. PubMed ID: 32114140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recycling of LiCoO
    Zhou S; Zhang Y; Meng Q; Dong P; Fei Z; Li Q
    J Environ Manage; 2021 Jan; 277():111426. PubMed ID: 33032002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling Valuable Metals from Spent Lithium-Ion Batteries Using Carbothermal Shock Method.
    Zhu XH; Li YJ; Gong MQ; Mo R; Luo SY; Yan X; Yang S
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300074. PubMed ID: 36781386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Weak Acidic and Strong Coordinated Deep Eutectic Solvent for Recycling of Cathode from Spent Lithium-Ion Batteries.
    Tian Y; Chen W; Zhang B; Chen Y; Shi R; Liu S; Zhang Z; Mu T
    ChemSusChem; 2022 Aug; 15(16):e202200524. PubMed ID: 35778817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis.
    Yu S; Xiong J; Wu D; Lü X; Yao Z; Xu S; Tang J
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40205-40209. PubMed ID: 32661975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent.
    Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H
    Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A green and effective room-temperature recycling process of LiFePO
    Li L; Bian Y; Zhang X; Yao Y; Xue Q; Fan E; Wu F; Chen R
    Waste Manag; 2019 Feb; 85():437-444. PubMed ID: 30803599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.