BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35644472)

  • 1. Automated Segmentation of Autofluorescence Lesions in Stargardt Disease.
    Zhao PY; Branham K; Schlegel D; Fahim AT; Jayasundera KT
    Ophthalmol Retina; 2022 Nov; 6(11):1098-1104. PubMed ID: 35644472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence of Atrophic Lesions in Stargardt Disease in the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study: Report No. 5.
    Strauss RW; Muñoz B; Ho A; Jha A; Michaelides M; Mohand-Said S; Cideciyan AV; Birch D; Hariri AH; Nittala MG; Sadda S; Scholl HPN;
    JAMA Ophthalmol; 2017 Jul; 135(7):687-695. PubMed ID: 28542697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progression of Stargardt Disease as Determined by Fundus Autofluorescence in the Retrospective Progression of Stargardt Disease Study (ProgStar Report No. 9).
    Strauss RW; Muñoz B; Ho A; Jha A; Michaelides M; Cideciyan AV; Audo I; Birch DG; Hariri AH; Nittala MG; Sadda S; West S; Scholl HPN;
    JAMA Ophthalmol; 2017 Nov; 135(11):1232-1241. PubMed ID: 29049437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COMPARISON OF MANUAL AND SEMIAUTOMATED FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT DISEASE PHENOTYPE.
    Kuehlewein L; Hariri AH; Ho A; Dustin L; Wolfson Y; Strauss RW; Scholl HP; Sadda SR
    Retina; 2016 Jun; 36(6):1216-21. PubMed ID: 26583307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progression of Visual Acuity and Fundus Autofluorescence in Recent-Onset Stargardt Disease: ProgStar Study Report #4.
    Kong X; West SK; Strauss RW; Munoz B; Cideciyan AV; Michaelides M; Ho A; Ahmed M; Schönbach EM; Cheetham JK; Ervin AM; Scholl HPN;
    Ophthalmol Retina; 2017; 1(6):514-523. PubMed ID: 31047445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Short-Wavelength Reduced-Illuminance and Conventional Autofluorescence Imaging in Stargardt Macular Dystrophy.
    Strauss RW; Muñoz B; Jha A; Ho A; Cideciyan AV; Kasilian ML; Wolfson Y; Sadda S; West S; Scholl HPN; Michaelides M
    Am J Ophthalmol; 2016 Aug; 168():269-278. PubMed ID: 27296491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Green Versus Blue Fundus Autofluorescence in
    Müller PL; Pfau M; Mauschitz MM; Möller PT; Birtel J; Chang P; Gliem M; Schmitz-Valckenberg S; Fleckenstein M; Holz FG; Herrmann P
    Transl Vis Sci Technol; 2018 Sep; 7(5):13. PubMed ID: 30279998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning.
    Kugelman J; Alonso-Caneiro D; Chen Y; Arunachalam S; Huang D; Vallis N; Collins MJ; Chen FK
    Transl Vis Sci Technol; 2020 Oct; 9(11):12. PubMed ID: 33133774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic Segmentation in Multiple OCT Layers For Stargardt Disease Characterization Via Deep Learning.
    Mishra Z; Wang Z; Sadda SR; Hu Z
    Transl Vis Sci Technol; 2021 Apr; 10(4):24. PubMed ID: 34004000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrophy Expansion Rates in Stargardt Disease Using Ultra-Widefield Fundus Autofluorescence.
    Heath Jeffery RC; Thompson JA; Lo J; Lamey TM; McLaren TL; McAllister IL; Mackey DA; Constable IJ; De Roach JN; Chen FK
    Ophthalmol Sci; 2021 Mar; 1(1):100005. PubMed ID: 36246008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Applied to Automated Segmentation of Geographic Atrophy in Fundus Autofluorescence Images.
    Arslan J; Samarasinghe G; Sowmya A; Benke KK; Hodgson LAB; Guymer RH; Baird PN
    Transl Vis Sci Technol; 2021 Jul; 10(8):2. PubMed ID: 34228106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 12-Month Period: ProgStar Report No. 11.
    Strauss RW; Kong X; Ho A; Jha A; West S; Ip M; Bernstein PS; Birch DG; Cideciyan AV; Michaelides M; Sahel JA; Sunness JS; Traboulsi EI; Zrenner E; Pitetta S; Jenkins D; Hariri AH; Sadda S; Scholl HPN;
    JAMA Ophthalmol; 2019 Oct; 137(10):1134-1145. PubMed ID: 31369039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation and feature discovery of age-related macular degeneration and Stargardt disease via self-attended neural networks.
    Wang Z; Sadda SR; Lee A; Hu ZJ
    Sci Rep; 2022 Aug; 12(1):14565. PubMed ID: 36028647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease.
    Charng J; Xiao D; Mehdizadeh M; Attia MS; Arunachalam S; Lamey TM; Thompson JA; McLaren TL; De Roach JN; Mackey DA; Frost S; Chen FK
    Sci Rep; 2020 Oct; 10(1):16491. PubMed ID: 33020556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong versus Weak Data Labeling for Artificial Intelligence Algorithms in the Measurement of Geographic Atrophy.
    Domalpally A; Slater R; Linderman RE; Balaji R; Bogost J; Voland R; Pak J; Blodi BA; Channa R; Fong D; Chew EY
    Ophthalmol Sci; 2024; 4(5):100477. PubMed ID: 38827491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progression of Stargardt Disease as Determined by Fundus Autofluorescence Over a 24-Month Period (ProgStar Report No. 17).
    Strauss RW; Ho A; Jha A; Fujinami K; Michaelides M; Cideciyan AV; Audo I; Birch DG; Sadda S; Ip M; West S; Schönbach EM; Kong X; Scholl HPN;
    Am J Ophthalmol; 2023 Jun; 250():157-170. PubMed ID: 36764427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a deep learning segmentation algorithm to quantify the skeletal muscle index and sarcopenia in metastatic renal carcinoma.
    Roblot V; Giret Y; Mezghani S; Auclin E; Arnoux A; Oudard S; Duron L; Fournier L
    Eur Radiol; 2022 Jul; 32(7):4728-4737. PubMed ID: 35304638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.
    Schelb P; Tavakoli AA; Tubtawee T; Hielscher T; Radtke JP; Görtz M; Schütz V; Kuder TA; Schimmöller L; Stenzinger A; Hohenfellner M; Schlemmer HP; Bonekamp D
    Rofo; 2021 May; 193(5):559-573. PubMed ID: 33212541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated Segmentation Algorithm for Perihematomal Edema Volumetry After Spontaneous Intracerebral Hemorrhage.
    Ironside N; Chen CJ; Mutasa S; Sim JL; Ding D; Marfatiah S; Roh D; Mukherjee S; Johnston KC; Southerland AM; Mayer SA; Lignelli A; Connolly ES
    Stroke; 2020 Mar; 51(3):815-823. PubMed ID: 32078476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.