These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35644798)
1. Efficient monoacylglycerol synthesis by carboxylesterase EstGtA2 from Geobacillus thermodenitrificans in a solvent-free two-phase system. Osamura T; Nonaka K; Takahashi F; Okuda M; Hagihara H; Takimura Y J Biosci Bioeng; 2022 Aug; 134(2):89-94. PubMed ID: 35644798 [TBL] [Abstract][Full Text] [Related]
2. Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme subfamily XIII.2 [corrected]. Charbonneau DM; Beauregard M PLoS One; 2013; 8(10):e76675. PubMed ID: 24116134 [TBL] [Abstract][Full Text] [Related]
3. Impact of Salt Concentration and pH on Surface Charged Residues: Controlling Protein Association Pathways in Carboxylesterase EstGtA2. Moisan JK; Meddeb-Mouelhi F; Charbonneau DM; Beauregard M Protein Pept Lett; 2017; 24(6):561-572. PubMed ID: 28393686 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of monoacylglycerol containing pinolenic acid via stepwise esterification using a cold active lipase. Pyo YG; Hong SI; Kim Y; Kim BH; Kim IH Biotechnol Prog; 2012; 28(5):1218-24. PubMed ID: 22753389 [TBL] [Abstract][Full Text] [Related]
5. N-terminal purification tag alters thermal stability of the carboxylesterase EstGtA2 from G. thermodenitrificans by impairing reversibility of thermal unfolding. Charbonneau DM; Meddeb-Mouelhi F; Beauregard M Protein Pept Lett; 2012 Mar; 19(3):264-9. PubMed ID: 21933135 [TBL] [Abstract][Full Text] [Related]
6. A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family. Charbonneau DM; Meddeb-Mouelhi F; Beauregard M J Biochem; 2010 Sep; 148(3):299-308. PubMed ID: 20587647 [TBL] [Abstract][Full Text] [Related]
7. Lipases of Endophytic Fungi Stemphylium lycopersici and Sordaria sp.: Application in the synthesis of solketal derived Monoacylglycerols. Rocha KSC; Queiroz MSR; Gomes BS; Dallago R; de Souza ROMA; Guimarães DO; Itabaiana I; Leal ICR Enzyme Microb Technol; 2020 Dec; 142():109664. PubMed ID: 33220859 [TBL] [Abstract][Full Text] [Related]
8. Lipase-catalyzed synthesis of monoacylglycerol in a homogeneous system. Monteiro JB; Nascimento MG; Ninow JL Biotechnol Lett; 2003 Apr; 25(8):641-4. PubMed ID: 12882159 [TBL] [Abstract][Full Text] [Related]
9. Lipase-catalyzed glycerolysis of anchovy oil in a solvent-free system: Simultaneous optimization of monoacylglycerol synthesis and end-product oxidative stability. Palacios D; Ortega N; Rubio-Rodríguez N; Busto MD Food Chem; 2019 Jan; 271():372-379. PubMed ID: 30236689 [TBL] [Abstract][Full Text] [Related]
10. A Thermostable Monoacylglycerol Lipase from Marine Tang W; Lan D; Zhao Z; Li S; Li X; Wang Y Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30759774 [TBL] [Abstract][Full Text] [Related]
11. 13C NMR quantification of mono and diacylglycerols obtained through the solvent-free lipase-catalyzed esterification of saturated fatty acids. Fernandes JL; de Souza RO; de Vasconcellos Azeredo RB Magn Reson Chem; 2012 Jun; 50(6):424-8. PubMed ID: 22539418 [TBL] [Abstract][Full Text] [Related]
12. Immobilized MAS1 Lipase-catalyzed Synthesis of n-3 PUFA-rich Triacylglycerols in Deep Eutectic Solvents. Wang X; Zhao X; Qin X; Zhao Z; Yang B; Wang Y J Oleo Sci; 2021 Feb; 70(2):227-236. PubMed ID: 33456003 [TBL] [Abstract][Full Text] [Related]
13. Expression and characterization of a thermostable monoacylglycerol lipase from thermophilic Doukyu N; Ito H; Sugimoto K Prep Biochem Biotechnol; 2024 Jun; ():1-9. PubMed ID: 38832778 [TBL] [Abstract][Full Text] [Related]
14. Fatty acid specificity of T1 lipase and its potential in acylglycerol synthesis. Qin XL; Lan DM; Zhong JF; Liu L; Wang YH; Yang B J Sci Food Agric; 2014 Jun; 94(8):1614-21. PubMed ID: 24338705 [TBL] [Abstract][Full Text] [Related]
15. Solvent-free enzymatic preparation of feruloylated monoacylglycerols optimized by response surface methodology. Sun SD; Shan L; Liu YF; Jin QZ; Zhang LX; Wang XG J Agric Food Chem; 2008 Jan; 56(2):442-7. PubMed ID: 18092748 [TBL] [Abstract][Full Text] [Related]
16. An Effective Strategy for the Production of Lauric Acid-Enriched Monoacylglycerol via Enzymatic Glycerolysis from Black Soldier Fly (Hermetia illucens) Larvae (BSFL) Oil. Xu W; Xu L; Liu X; He S; Ji Y; Wang W; Wang F Appl Biochem Biotechnol; 2021 Sep; 193(9):2781-2792. PubMed ID: 33871767 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic selective synthesis of 1,3-DAG based on deep eutectic solvent acting as substrate and solvent. Zeng CX; Qi SJ; Xin RP; Yang B; Wang YH Bioprocess Biosyst Eng; 2015 Nov; 38(11):2053-61. PubMed ID: 26210852 [TBL] [Abstract][Full Text] [Related]
18. Valorization of Olive Pomace Oil with Enzymatic Synthesis of 2-Monoacylglycerol. Keskin H; Koçak Yanık D; Mucuk HN; Göğüş F; Fadıloğlu S J Food Sci; 2016 Apr; 81(4):C841-8. PubMed ID: 26894571 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic production of glycerol acetate from glycerol. Oh S; Park C Enzyme Microb Technol; 2015 Feb; 69():19-23. PubMed ID: 25640720 [TBL] [Abstract][Full Text] [Related]
20. Sn-2-monoacylglycerol, not glycerol, is preferentially utilised for triacylglycerol and phosphatidylcholine biosynthesis in Atlantic salmon (Salmo salar L.) intestine. Oxley A; Jutfelt F; Sundell K; Olsen RE Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):115-23. PubMed ID: 17126582 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]