These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 35644887)
1. Coupling Fe Cao M; Liu Y; Sun K; Li H; Lin X; Zhang P; Zhou L; Wang A; Mehdi S; Wu X; Jiang J; Li B Small; 2022 Jul; 18(26):e2202014. PubMed ID: 35644887 [TBL] [Abstract][Full Text] [Related]
2. Wood-Derived Monolithic Catalysts with the Ability of Activating Water Molecules for Oxygen Electrocatalysis. Zhang P; Liu Y; Wang S; Zhou L; Liu T; Sun K; Cao H; Jiang J; Wu X; Li B Small; 2022 Aug; 18(34):e2202725. PubMed ID: 35871557 [TBL] [Abstract][Full Text] [Related]
3. Wood-Derived Bimetallic and Heteroatomic Hierarchically Porous Carbon Aerogel for Rechargeable Flow Zn-Air Batteries. Pang H; Sun P; Gong H; Zhang N; Cao J; Zhang R; Luo M; Li Y; Sun G; Li Y; Deng J; Gao M; Wang M; Kong B ACS Appl Mater Interfaces; 2021 Aug; 13(33):39458-39469. PubMed ID: 34433254 [TBL] [Abstract][Full Text] [Related]
5. Iron-Cobalt Phosphide Encapsulated in a N-Doped Carbon Framework as a Promising Low-Cost Oxygen Reduction Electrocatalyst for Zinc-Air Batteries. Liu J; Luo Z; Wu J; Qian D; Liao W; Waterhouse GIN; Chen X Inorg Chem; 2024 Jul; 63(27):12681-12689. PubMed ID: 38922608 [TBL] [Abstract][Full Text] [Related]
6. Defective Fe Chu P; Zhang Y; He J; Chen J; Zhuang J; Li Y; Ren X; Zhang P; Sun L; Yu B; Chen S Small Methods; 2022 Jul; 6(7):e2200207. PubMed ID: 35656764 [TBL] [Abstract][Full Text] [Related]
7. In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries. Cai P; Hong Y; Ci S; Wen Z Nanoscale; 2016 Dec; 8(48):20048-20055. PubMed ID: 27883155 [TBL] [Abstract][Full Text] [Related]
8. Efficient Oxygen Electrocatalyst for Zn-Air Batteries: Carbon Dots and Co Zhang P; Bin D; Wei JS; Niu XQ; Chen XB; Xia YY; Xiong HM ACS Appl Mater Interfaces; 2019 Apr; 11(15):14085-14094. PubMed ID: 30942998 [TBL] [Abstract][Full Text] [Related]
9. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi Chen K; Kim S; Rajendiran R; Prabakar K; Li G; Shi Z; Jeong C; Kang J; Li OL J Colloid Interface Sci; 2021 Jan; 582(Pt B):977-990. PubMed ID: 32927178 [TBL] [Abstract][Full Text] [Related]
10. Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Zhang L; Yang X; Cai R; Chen C; Xia Y; Zhang H; Yang D; Yao X Nanoscale; 2019 Jan; 11(3):826-832. PubMed ID: 30569935 [TBL] [Abstract][Full Text] [Related]
11. Boosting the activity and stability Deng X; Gu X; Deng Y; Jiang Z; Chen W; Dang D; Lin W; Chi B Nanoscale; 2022 Sep; 14(36):13192-13203. PubMed ID: 36047468 [TBL] [Abstract][Full Text] [Related]
12. A Fe Single Atom Seed-Mediated Strategy Toward Fe Chang J; Zhang Q; Yu J; Jing W; Wang S; Yin G; Waterhouse GIN; Lu S Adv Sci (Weinh); 2023 Aug; 10(22):e2301656. PubMed ID: 37254713 [TBL] [Abstract][Full Text] [Related]
13. Oxygen vacancy-rich N-doped carbon encapsulated BiOCl-CNTs heterostructures as robust electrocatalyst synergistically promote oxygen reduction and Zn-air batteries. Shao X; Yang Y; Liu Y; Yan P; Zhou S; Taylor Isimjan T; Yang X J Colloid Interface Sci; 2022 Feb; 607(Pt 1):826-835. PubMed ID: 34536937 [TBL] [Abstract][Full Text] [Related]
14. Wood-Derived Integral Air Electrode for Enhanced Interfacial Electrocatalysis in Rechargeable Zinc-Air Battery. Cui X; Liu Y; Han G; Cao M; Han L; Zhou B; Mehdi S; Wu X; Li B; Jiang J Small; 2021 Sep; 17(38):e2101607. PubMed ID: 34365727 [TBL] [Abstract][Full Text] [Related]
15. Co Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Rechargeable Zinc-air Batteries. Song L; Zhang J; Huang C; Zhao C; Yin X; Long H; Liu Y; Zhao Y Chem Asian J; 2023 May; 18(10):e202300150. PubMed ID: 37017570 [TBL] [Abstract][Full Text] [Related]
16. ZIF-8-derived N-doped porous carbon wrapped in porous carbon films as an air cathode for flexible solid-state Zn-air batteries. Yang Q; Liu R; Pan Y; Cao Z; Liu Y; Wang L; Yu J; Song H; Ye Z; Zhang S J Colloid Interface Sci; 2022 Dec; 628(Pt B):691-700. PubMed ID: 36027779 [TBL] [Abstract][Full Text] [Related]
17. Zn, Co, and Fe Tridoped N-C Core-Shell Nanocages as the High-Efficiency Oxygen Reduction Reaction Electrocatalyst in Zinc-Air Batteries. Li G; Deng W; He L; Wu J; Liu J; Wu T; Wang Y; Wang X ACS Appl Mater Interfaces; 2021 Jun; 13(24):28324-28333. PubMed ID: 34106675 [TBL] [Abstract][Full Text] [Related]
18. MnO/N-Doped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc-Air Batteries. Ding J; Ji S; Wang H; Brett DJL; Pollet BG; Wang R Chemistry; 2019 Feb; 25(11):2868-2876. PubMed ID: 30548500 [TBL] [Abstract][Full Text] [Related]
19. High-Performance Zinc-Air Batteries Based on Bifunctional Hierarchically Porous Nitrogen-Doped Carbon. Gui F; Jin Q; Xiao D; Xu X; Tan Q; Yang D; Li B; Ming P; Zhang C; Chen Z; Siahrostami S; Xiao Q Small; 2022 Feb; 18(8):e2105928. PubMed ID: 34894096 [TBL] [Abstract][Full Text] [Related]
20. Pollen-derived porous carbon decorated with cobalt/iron sulfide hybrids as cathode catalysts for flexible all-solid-state rechargeable Zn-air batteries. Fang W; Bai Z; Yu X; Zhang W; Wu M Nanoscale; 2020 Jun; 12(21):11746-11758. PubMed ID: 32458876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]