BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 35644914)

  • 1. Recent Advances in Aptamer-Based Nanopore Sensing at Single-Molecule Resolution.
    Lv P; Zhang W; Yang Y; Gao H; Li S; Tan CS; Ming D
    Chem Asian J; 2022 Aug; 17(16):e202200364. PubMed ID: 35644914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A universal strategy for aptamer-based nanopore sensing through host-guest interactions inside α-hemolysin.
    Li T; Liu L; Li Y; Xie J; Wu HC
    Angew Chem Int Ed Engl; 2015 Jun; 54(26):7568-71. PubMed ID: 25966821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Investigation of the Protein-Aptamer Interactions and Sensing Application Inside the Single Glass Nanopore.
    Cao M; Zhang L; Tang H; Qiu X; Li Y
    Anal Chem; 2022 Dec; 94(50):17405-17412. PubMed ID: 36475604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein detection by nanopores equipped with aptamers.
    Rotem D; Jayasinghe L; Salichou M; Bayley H
    J Am Chem Soc; 2012 Feb; 134(5):2781-7. PubMed ID: 22229655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive and regenerable nanopore sensing based on target induced aptamer dissociation.
    Zhang S; Chai H; Cheng K; Song L; Chen W; Yu L; Lu Z; Liu B; Zhao YD
    Biosens Bioelectron; 2020 Mar; 152():112011. PubMed ID: 32056734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers.
    Sze JYY; Ivanov AP; Cass AEG; Edel JB
    Nat Commun; 2017 Nov; 8(1):1552. PubMed ID: 29146902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aptamer-Functionalized Interface Nanopores Enable Amino Acid-Specific Peptide Detection.
    Schlotter T; Kloter T; Hengsteler J; Yang K; Zhan L; Ragavan S; Hu H; Zhang X; Duru J; Vörös J; Zambelli T; Nakatsuka N
    ACS Nano; 2024 Feb; 18(8):6286-6297. PubMed ID: 38355286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of an ATP-binding aptamer and its conformational changes using an α-hemolysin nanopore.
    Ying YL; Wang HY; Sutherland TC; Long YT
    Small; 2011 Jan; 7(1):87-94. PubMed ID: 21086519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of two isomeric binding configurations in a protein-aptamer complex with a biological nanopore.
    Van Meervelt V; Soskine M; Maglia G
    ACS Nano; 2014 Dec; 8(12):12826-35. PubMed ID: 25493908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA nanotechnology assisted nanopore-based analysis.
    Ding T; Yang J; Pan V; Zhao N; Lu Z; Ke Y; Zhang C
    Nucleic Acids Res; 2020 Apr; 48(6):2791-2806. PubMed ID: 32083656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA nanostructure-assisted detection of carcinoembryonic antigen with a solid-state nanopore.
    Tian R; Weng T; Chen S; Wu J; Yin B; Ma W; Liang L; Xie W; Wang Y; Zeng X; Yin Y; Wang D
    Bioelectrochemistry; 2023 Feb; 149():108284. PubMed ID: 36244111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current pulse signature of native kanamycin aptamer and its implication for molecular interactions on a single protein nanopore sensing interface.
    Shi HQ; Ma Y; Wang YH; Fang F; Wu ZY
    Biosens Bioelectron; 2022 Apr; 201():113966. PubMed ID: 35016110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule analysis by biological nanopore sensors.
    Ying YL; Cao C; Long YT
    Analyst; 2014 Aug; 139(16):3826-35. PubMed ID: 24991734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An aptamer-assisted biological nanopore biosensor for ultra-sensitive detection of ochratoxin A with a portable single-molecule measuring instrument.
    Li T; Su Z; Li Y; Xi L; Li G
    Talanta; 2022 Oct; 248():123619. PubMed ID: 35671547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor.
    Chingarande RG; Tian K; Kuang Y; Sarangee A; Hou C; Ma E; Ren J; Hawkins S; Kim J; Adelstein R; Chen S; Gillis KD; Gu LQ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2108118120. PubMed ID: 37276386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ready-to-use nanopore platform for label-free small molecule quantification: Ethanolamine as first example.
    Quint I; Simantzik J; Kaiser L; Laufer S; Csuk R; Smith D; Kohl M; Deigner HP
    Nanomedicine; 2024 Jan; 55():102724. PubMed ID: 38007066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaped DNA origami carrier nanopore translocation influenced by aptamer based surface modification.
    Ding T; Yang J; Wang J; Pan V; Lu Z; Ke Y; Zhang C
    Biosens Bioelectron; 2022 Jan; 195():113658. PubMed ID: 34706323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanopore stochastic detection: diversity, sensitivity, and beyond.
    Wang G; Wang L; Han Y; Zhou S; Guan X
    Acc Chem Res; 2013 Dec; 46(12):2867-77. PubMed ID: 23614724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Organic Cage as Single-Molecule Carrier for Solid-State Nanopore Analysis.
    Wang Z; Hu R; Zhu R; Lu W; Wei G; Zhao J; Gu ZY; Zhao Q
    Small Methods; 2022 Nov; 6(11):e2200743. PubMed ID: 36216776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.