These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 35645145)
21. Applying 'Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra' (SWATH) for systematic toxicological analysis with liquid chromatography-high-resolution tandem mass spectrometry. Arnhard K; Gottschall A; Pitterl F; Oberacher H Anal Bioanal Chem; 2015 Jan; 407(2):405-14. PubMed ID: 25366975 [TBL] [Abstract][Full Text] [Related]
22. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Vidova V; Spacil Z Anal Chim Acta; 2017 Apr; 964():7-23. PubMed ID: 28351641 [TBL] [Abstract][Full Text] [Related]
23. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform. Yu F; Teo GC; Kong AT; Fröhlich K; Li GX; Demichev V; Nesvizhskii AI Nat Commun; 2023 Jul; 14(1):4154. PubMed ID: 37438352 [TBL] [Abstract][Full Text] [Related]
24. Data-Independent Acquisition Approach to Proteome: A Case Study and a Spectral Library for Mass Spectrometry-Based Investigation of Awasthi K; Kootimole CN; Aravind A; Prasad TSK OMICS; 2022 Mar; 26(3):142-150. PubMed ID: 35099291 [TBL] [Abstract][Full Text] [Related]
25. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Chapman JD; Goodlett DR; Masselon CD Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846 [TBL] [Abstract][Full Text] [Related]
27. SWATH Mass Spectrometry for Proteomics of Non-Depleted Plasma. Krisp C; Molloy MP Methods Mol Biol; 2017; 1619():373-383. PubMed ID: 28674897 [TBL] [Abstract][Full Text] [Related]
28. Comprehensive MS/MS profiling by UHPLC-ESI-QTOF-MS/MS using SWATH data-independent acquisition for the study of platelet lipidomes in coronary artery disease. Schlotterbeck J; Chatterjee M; Gawaz M; Lämmerhofer M Anal Chim Acta; 2019 Jan; 1046():1-15. PubMed ID: 30482286 [TBL] [Abstract][Full Text] [Related]
29. Data-independent acquisition proteomics methods for analyzing post-translational modifications. Yang Y; Qiao L Proteomics; 2023 Apr; 23(7-8):e2200046. PubMed ID: 36036492 [TBL] [Abstract][Full Text] [Related]
30. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data. Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709 [TBL] [Abstract][Full Text] [Related]
32. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Bilbao A; Varesio E; Luban J; Strambio-De-Castillia C; Hopfgartner G; Müller M; Lisacek F Proteomics; 2015 Mar; 15(5-6):964-80. PubMed ID: 25430050 [TBL] [Abstract][Full Text] [Related]
33. Proteomic Analysis of Human Neural Stem Cell Differentiation by SWATH-MS. Tyleckova J; Cervenka J; Poliakh I; Novak J; Kepkova KV; Skalnikova HK; Vodicka P Methods Mol Biol; 2022; 2520():335-360. PubMed ID: 35579839 [TBL] [Abstract][Full Text] [Related]
34. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry ("HIAP-DIA"). Zhou Y; Tan Z; Xue P; Wang Y; Li X; Guan F Proteomics; 2021 Mar; 21(5):e2000264. PubMed ID: 33460299 [TBL] [Abstract][Full Text] [Related]
35. Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma. van der Laan T; Boom I; Maliepaard J; Dubbelman AC; Harms AC; Hankemeier T Metabolites; 2020 Dec; 10(12):. PubMed ID: 33353236 [TBL] [Abstract][Full Text] [Related]
36. Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood. Espejo C; Lyons B; Woods GM; Wilson R Methods Mol Biol; 2023; 2628():127-152. PubMed ID: 36781783 [TBL] [Abstract][Full Text] [Related]
37. Hybrid Spectral Library Combining DIA-MS Data and a Targeted Virtual Library Substantially Deepens the Proteome Coverage. Lou R; Tang P; Ding K; Li S; Tian C; Li Y; Zhao S; Zhang Y; Shui W iScience; 2020 Mar; 23(3):100903. PubMed ID: 32109675 [TBL] [Abstract][Full Text] [Related]
38. Data-independent acquisition-based proteome and phosphoproteome profiling across six melanoma cell lines reveals determinants of proteotypes. Gao E; Li W; Wu C; Shao W; Di Y; Liu Y Mol Omics; 2021 Jun; 17(3):413-425. PubMed ID: 33728422 [TBL] [Abstract][Full Text] [Related]
39. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Ludwig C; Gillet L; Rosenberger G; Amon S; Collins BC; Aebersold R Mol Syst Biol; 2018 Aug; 14(8):e8126. PubMed ID: 30104418 [TBL] [Abstract][Full Text] [Related]
40. [Advances of peptide-centric data-independent acquisition analysis algorithms and software tools]. Zhang Y; Shu K; Chang C Sheng Wu Gong Cheng Xue Bao; 2023 Sep; 39(9):3579-3593. PubMed ID: 37805839 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]