These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35645377)

  • 1. Binocular Viewing Facilitates Size Constancy for Grasping and Manual Estimation.
    Niechwiej-Szwedo E; Cao M; Barnett-Cowan M
    Vision (Basel); 2022 Apr; 6(2):. PubMed ID: 35645377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some binocular advantages for planning reach, but not grasp, components of prehension.
    Grant S; Conway ML
    Exp Brain Res; 2019 May; 237(5):1239-1255. PubMed ID: 30850853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocular vision leads to a dissociation between grip force and grip aperture scaling during reach-to-grasp movements.
    Jackson SR; Newport R; Shaw A
    Curr Biol; 2002 Feb; 12(3):237-40. PubMed ID: 11839278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When two eyes are better than one in prehension: monocular viewing and end-point variance.
    Loftus A; Servos P; Goodale MA; Mendarozqueta N; Mon-Williams M
    Exp Brain Res; 2004 Oct; 158(3):317-27. PubMed ID: 15164152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereopsis contributes to the predictive control of grip forces during prehension.
    Mroczkowski CA; Niechwiej-Szwedo E
    Exp Brain Res; 2021 Apr; 239(4):1345-1358. PubMed ID: 33661370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages of binocular vision for the control of reaching and grasping.
    Melmoth DR; Grant S
    Exp Brain Res; 2006 May; 171(3):371-88. PubMed ID: 16323004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of delay on the kinematics of grasping.
    Hu Y; Eagleson R; Goodale MA
    Exp Brain Res; 1999 May; 126(1):109-16. PubMed ID: 10333011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia.
    Marotta JJ; Behrmann M; Goodale MA
    Exp Brain Res; 1997 Aug; 116(1):113-21. PubMed ID: 9305820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-cue integration in grasp programming: no evidence for a binocular specialism.
    Keefe BD; Hibbard PB; Watt SJ
    Neuropsychologia; 2011 Apr; 49(5):1246-1257. PubMed ID: 21371484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprioceptive Distance Cues Restore Perfect Size Constancy in Grasping, but Not Perception, When Vision Is Limited.
    Chen J; Sperandio I; Goodale MA
    Curr Biol; 2018 Mar; 28(6):927-932.e4. PubMed ID: 29502946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of familiar size in the control of grasping.
    Marotta JJ; Goodale MA
    J Cogn Neurosci; 2001 Jan; 13(1):8-17. PubMed ID: 11224905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distance estimation in the visual and visuomotor systems.
    Servos P
    Exp Brain Res; 2000 Jan; 130(1):35-47. PubMed ID: 10638439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grasping after a delay shifts size-scaling from absolute to relative metrics.
    Hu Y; Goodale MA
    J Cogn Neurosci; 2000 Sep; 12(5):856-68. PubMed ID: 11054927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binocular advantage for prehension movements performed in visually enriched environments requiring visual search.
    Gnanaseelan R; Gonzalez DA; Niechwiej-Szwedo E
    Front Hum Neurosci; 2014; 8():959. PubMed ID: 25506323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Grasping deficits and adaptations in adults with stereo vision losses.
    Melmoth DR; Finlay AL; Morgan MJ; Grant S
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3711-20. PubMed ID: 19339741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binocular cues are important in controlling the grasp but not the reach in natural prehension movements.
    Watt SJ; Bradshaw MF
    Neuropsychologia; 2000; 38(11):1473-81. PubMed ID: 10906373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of binocular vision in prehension: a kinematic analysis.
    Servos P; Goodale MA; Jakobson LS
    Vision Res; 1992 Aug; 32(8):1513-21. PubMed ID: 1455724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of learned pictorial cues in the programming and control of grasping.
    Marotta JJ; Goodale MA
    Exp Brain Res; 1998 Aug; 121(4):465-70. PubMed ID: 9746154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.