These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 35645394)

  • 21. Three-dimensional imaging of fibrous cap by frequency-domain optical coherence tomography.
    Bezerra HG; Attizzani GF; Costa MA
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):547-9. PubMed ID: 21954181
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct morphological features of ruptured culprit plaque for acute coronary events compared to those with silent rupture and thin-cap fibroatheroma: a combined optical coherence tomography and intravascular ultrasound study.
    Tian J; Ren X; Vergallo R; Xing L; Yu H; Jia H; Soeda T; McNulty I; Hu S; Lee H; Yu B; Jang IK
    J Am Coll Cardiol; 2014 Jun; 63(21):2209-16. PubMed ID: 24632266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of coronary atherosclerosis using optical coherence tomography.
    Kubo T; Tanaka A; Ino Y; Kitabata H; Shiono Y; Akasaka T
    J Atheroscler Thromb; 2014; 21(9):895-903. PubMed ID: 25069815
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical Coherence Tomography Based Biomechanical Fluid-Structure Interaction Analysis of Coronary Atherosclerosis Progression.
    Carpenter HJ; Ghayesh MH; Zander AC; Ottaway JL; Di Giovanni G; Nicholls SJ; Psaltis PJ
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35098943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging.
    Ughi GJ; Verjans J; Fard AM; Wang H; Osborn E; Hara T; Mauskapf A; Jaffer FA; Tearney GJ
    Int J Cardiovasc Imaging; 2015 Feb; 31(2):259-68. PubMed ID: 25341407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intravascular optical coherence tomography method for automated detection of macrophage infiltration within atherosclerotic coronary plaques.
    Rico-Jimenez JJ; Campos-Delgado DU; Buja LM; Vela D; Jo JA
    Atherosclerosis; 2019 Nov; 290():94-102. PubMed ID: 31604172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intracoronary imaging for detecting vulnerable plaque.
    Fujii K; Hao H; Ohyanagi M; Masuyama T
    Circ J; 2013; 77(3):588-95. PubMed ID: 23370454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coronary CT angiography characteristics of OCT-defined thin-cap fibroatheroma: a section-to-section comparison study.
    Yang DH; Kang SJ; Koo HJ; Chang M; Kang JW; Lim TH; Baek S; Han S; Lee PH; Roh JH; Ahn JM; Park DW; Lee SW; Lee CW; Park SW; Park SJ; Mintz GS; Kim YH
    Eur Radiol; 2018 Feb; 28(2):833-843. PubMed ID: 28836052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in Coronary Plaque Composition in Patients With Acute Myocardial Infarction Treated With High-Intensity Statin Therapy (IBIS-4): A Serial Optical Coherence Tomography Study.
    Räber L; Koskinas KC; Yamaji K; Taniwaki M; Roffi M; Holmvang L; Garcia Garcia HM; Zanchin T; Maldonado R; Moschovitis A; Pedrazzini G; Zaugg S; Dijkstra J; Matter CM; Serruys PW; Lüscher TF; Kelbaek H; Karagiannis A; Radu MD; Windecker S
    JACC Cardiovasc Imaging; 2019 Aug; 12(8 Pt 1):1518-1528. PubMed ID: 30553686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography.
    Chamié D; Bezerra HG; Attizzani GF; Yamamoto H; Kanaya T; Stefano GT; Fujino Y; Mehanna E; Wang W; Abdul-Aziz A; Dias M; Simon DI; Costa MA
    JACC Cardiovasc Interv; 2013 Aug; 6(8):800-13. PubMed ID: 23871510
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical coherence tomography-guided percutaneous coronary intervention: a review of current clinical applications.
    Kurogi K; Ishii M; Yamamoto N; Yamanaga K; Tsujita K
    Cardiovasc Interv Ther; 2021 Apr; 36(2):169-177. PubMed ID: 33454867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sex Differences in Nonculprit Coronary Plaque Microstructures on Frequency-Domain Optical Coherence Tomography in Acute Coronary Syndromes and Stable Coronary Artery Disease.
    Kataoka Y; Puri R; Hammadah M; Duggal B; Uno K; Kapadia SR; Tuzcu EM; Nissen SE; King P; Nicholls SJ
    Circ Cardiovasc Imaging; 2016 Aug; 9(8):. PubMed ID: 27511975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis.
    Prati F; Regar E; Mintz GS; Arbustini E; Di Mario C; Jang IK; Akasaka T; Costa M; Guagliumi G; Grube E; Ozaki Y; Pinto F; Serruys PW;
    Eur Heart J; 2010 Feb; 31(4):401-15. PubMed ID: 19892716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utility of Multimodality Intravascular Imaging and the Local Hemodynamic Forces to Predict Atherosclerotic Disease Progression.
    Bourantas CV; Räber L; Sakellarios A; Ueki Y; Zanchin T; Koskinas KC; Yamaji K; Taniwaki M; Heg D; Radu MD; Papafaklis MI; Kalatzis F; Naka KK; Fotiadis DI; Mathur A; Serruys PW; Michalis LK; Garcia-Garcia HM; Karagiannis A; Windecker S
    JACC Cardiovasc Imaging; 2020 Apr; 13(4):1021-1032. PubMed ID: 31202749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of optical coherence tomography and intravascular ultrasound for evaluation of coronary lipid-rich atherosclerotic plaque progression and regression.
    Xie Z; Tian J; Ma L; Du H; Dong N; Hou J; He J; Dai J; Liu X; Pan H; Liu Y; Yu B
    Eur Heart J Cardiovasc Imaging; 2015 Dec; 16(12):1374-80. PubMed ID: 25911116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current research and future prospects of IVOCT imaging-based detection of the vascular lumen and vulnerable plaque.
    Zhang R; Fan Y; Qi W; Wang A; Tang X; Gao T
    J Biophotonics; 2022 May; 15(5):e202100376. PubMed ID: 35139263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current clinical applications of coronary optical coherence tomography.
    Kume T; Uemura S
    Cardiovasc Interv Ther; 2018 Jan; 33(1):1-10. PubMed ID: 28710605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading.
    Celi S; Berti S
    Med Image Anal; 2014 Oct; 18(7):1157-68. PubMed ID: 25077844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plaque sealing and passivation with a mechanical self-expanding low outward force nitinol vShield device for the treatment of IVUS and OCT-derived thin cap fibroatheromas (TCFAs) in native coronary arteries: report of the pilot study vShield Evaluated at Cardiac hospital in Rotterdam for Investigation and Treatment of TCFA (SECRITT).
    Wykrzykowska JJ; Diletti R; Gutierrez-Chico JL; van Geuns RJ; van der Giessen WJ; Ramcharitar S; Duckers HE; Schultz C; de Feyter P; van der Ent M; Regar E; de Jaegere P; Garcia-Garcia HM; Pawar R; Gonzalo N; Ligthart J; de Schepper J; van den Berg N; Milewski K; Granada JF; Serruys PW
    EuroIntervention; 2012 Dec; 8(8):945-54. PubMed ID: 22669133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.