BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35645923)

  • 1. Deep Personality Trait Recognition: A Survey.
    Zhao X; Tang Z; Zhang S
    Front Psychol; 2022; 13():839619. PubMed ID: 35645923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based EEG emotion recognition: Current trends and future perspectives.
    Wang X; Ren Y; Luo Z; He W; Hong J; Huang Y
    Front Psychol; 2023; 14():1126994. PubMed ID: 36923142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating audio and visual modalities for multimodal personality trait recognition
    Zhao X; Liao Y; Tang Z; Xu Y; Tao X; Wang D; Wang G; Lu H
    Front Neurosci; 2022; 16():1107284. PubMed ID: 36685221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-to-end multimodal clinical depression recognition using deep neural networks: A comparative analysis.
    Muzammel M; Salam H; Othmani A
    Comput Methods Programs Biomed; 2021 Nov; 211():106433. PubMed ID: 34614452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid model based on neural networks for biomedical relation extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Zhang S; Sun Y; Yang L
    J Biomed Inform; 2018 May; 81():83-92. PubMed ID: 29601989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.
    Islam MM; Nooruddin S; Karray F; Muhammad G
    Comput Biol Med; 2022 Oct; 149():106060. PubMed ID: 36084382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Spatial-Spectral-Temporal EEG Representations with Deep Attentive-Recurrent-Convolutional Neural Networks for Pain Intensity Assessment.
    Wu F; Mai W; Tang Y; Liu Q; Chen J; Guo Z
    Neuroscience; 2022 Jan; 481():144-155. PubMed ID: 34843893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Wearable-Based Activity Recognition Using Image Representations.
    Sanchez Guinea A; Sarabchian M; Mühlhäuser M
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biologically motivated learning method for deep neural networks using hierarchical competitive learning.
    Shinozaki T
    Neural Netw; 2021 Dec; 144():271-278. PubMed ID: 34520937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Dynamic Neural Networks for Multimodal Gesture Segmentation and Recognition.
    Wu D; Pigou L; Kindermans PJ; Le ND; Shao L; Dambre J; Odobez JM
    IEEE Trans Pattern Anal Mach Intell; 2016 Aug; 38(8):1583-97. PubMed ID: 26955020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facial expression recognition based on deep learning.
    Ge H; Zhu Z; Dai Y; Wang B; Wu X
    Comput Methods Programs Biomed; 2022 Mar; 215():106621. PubMed ID: 35164903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning: A Primer for Radiologists.
    Chartrand G; Cheng PM; Vorontsov E; Drozdzal M; Turcotte S; Pal CJ; Kadoury S; Tang A
    Radiographics; 2017; 37(7):2113-2131. PubMed ID: 29131760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Recurrent Neural Networks for Human Activity Recognition.
    Murad A; Pyun JY
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29113103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep phenotyping: deep learning for temporal phenotype/genotype classification.
    Taghavi Namin S; Esmaeilzadeh M; Najafi M; Brown TB; Borevitz JO
    Plant Methods; 2018; 14():66. PubMed ID: 30087695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Review of Recent Deep Learning Techniques for Human Activity Recognition.
    Le VT; Tran-Trung K; Hoang VT
    Comput Intell Neurosci; 2022; 2022():8323962. PubMed ID: 35498187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated depression analysis using convolutional neural networks from speech.
    He L; Cao C
    J Biomed Inform; 2018 Jul; 83():103-111. PubMed ID: 29852317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.