BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 35646086)

  • 1. RNA Helicases in Microsatellite Repeat Expansion Disorders and Neurodegeneration.
    Castelli LM; Benson BC; Huang WP; Lin YH; Hautbergue GM
    Front Genet; 2022; 13():886563. PubMed ID: 35646086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies.
    Schwartz JL; Jones KL; Yeo GW
    Crit Rev Biochem Mol Biol; 2021 Feb; 56(1):31-53. PubMed ID: 33172304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RNA helicase DHX36-G4R1 modulates C9orf72 GGGGCC hexanucleotide repeat-associated translation.
    Tseng YJ; Sandwith SN; Green KM; Chambers AE; Krans A; Raimer HM; Sharlow ME; Reisinger MA; Richardson AE; Routh ED; Smaldino MA; Wang YH; Vaughn JP; Todd PK; Smaldino PJ
    J Biol Chem; 2021 Aug; 297(2):100914. PubMed ID: 34174288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of repeat-associated non-AUG translation in neurological microsatellite expansion disorders.
    Castelli LM; Huang WP; Lin YH; Chang KY; Hautbergue GM
    Biochem Soc Trans; 2021 Apr; 49(2):775-792. PubMed ID: 33729487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Helicase Unwinds Hexanucleotide Repeat RNA G-Quadruplexes and Facilitates Repeat-Associated Non-AUG Translation.
    Liu H; Lu YN; Paul T; Periz G; Banco MT; Ferré-D'Amaré AR; Rothstein JD; Hayes LR; Myong S; Wang J
    J Am Chem Soc; 2021 May; 143(19):7368-7379. PubMed ID: 33855846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New pathologic mechanisms in nucleotide repeat expansion disorders.
    Rodriguez CM; Todd PK
    Neurobiol Dis; 2019 Oct; 130():104515. PubMed ID: 31229686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Emerging Role of DNA Damage in the Pathogenesis of the C9orf72 Repeat Expansion in Amyotrophic Lateral Sclerosis.
    Konopka A; Atkin JD
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening yields several small-molecule inhibitors of repeat-associated non-AUG translation.
    Green KM; Sheth UJ; Flores BN; Wright SE; Sutter AB; Kearse MG; Barmada SJ; Ivanova MI; Todd PK
    J Biol Chem; 2019 Dec; 294(49):18624-18638. PubMed ID: 31649034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels.
    Beckers J; Tharkeshwar AK; Van Damme P
    Autophagy; 2021 Nov; 17(11):3306-3322. PubMed ID: 33632058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cas9 Screens Identify the RNA Helicase DDX3X as a Repressor of C9ORF72 (GGGGCC)n Repeat-Associated Non-AUG Translation.
    Cheng W; Wang S; Zhang Z; Morgens DW; Hayes LR; Lee S; Portz B; Xie Y; Nguyen BV; Haney MS; Yan S; Dong D; Coyne AN; Yang J; Xian F; Cleveland DW; Qiu Z; Rothstein JD; Shorter J; Gao FB; Bassik MC; Sun S
    Neuron; 2019 Dec; 104(5):885-898.e8. PubMed ID: 31587919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders?
    van Blitterswijk M; DeJesus-Hernandez M; Rademakers R
    Curr Opin Neurol; 2012 Dec; 25(6):689-700. PubMed ID: 23160421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions.
    Todd TW; Petrucelli L
    J Neurochem; 2016 Aug; 138 Suppl 1():145-62. PubMed ID: 27016280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenic determinants and mechanisms of ALS/FTD linked to hexanucleotide repeat expansions in the C9orf72 gene.
    Wen X; Westergard T; Pasinelli P; Trotti D
    Neurosci Lett; 2017 Jan; 636():16-26. PubMed ID: 27619540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAN translation-What makes it run?
    Green KM; Linsalata AE; Todd PK
    Brain Res; 2016 Sep; 1647():30-42. PubMed ID: 27060770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeat associated non-ATG (RAN) translation: new starts in microsatellite expansion disorders.
    Cleary JD; Ranum LP
    Curr Opin Genet Dev; 2014 Jun; 26():6-15. PubMed ID: 24852074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DDX3X and specific initiation factors modulate FMR1 repeat-associated non-AUG-initiated translation.
    Linsalata AE; He F; Malik AM; Glineburg MR; Green KM; Natla S; Flores BN; Krans A; Archbold HC; Fedak SJ; Barmada SJ; Todd PK
    EMBO Rep; 2019 Sep; 20(9):e47498. PubMed ID: 31347257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia.
    Zu T; Liu Y; Bañez-Coronel M; Reid T; Pletnikova O; Lewis J; Miller TM; Harms MB; Falchook AE; Subramony SH; Ostrow LW; Rothstein JD; Troncoso JC; Ranum LP
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):E4968-77. PubMed ID: 24248382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosomal quality control factors inhibit repeat-associated non-AUG translation from GC-rich repeats.
    Tseng YJ; Malik I; Deng X; Krans A; Jansen-West K; Tank EMH; Gomez NB; Sher R; Petrucelli L; Barmada SJ; Todd PK
    bioRxiv; 2023 Jun; ():. PubMed ID: 37333274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA biology of disease-associated microsatellite repeat expansions.
    Rohilla KJ; Gagnon KT
    Acta Neuropathol Commun; 2017 Aug; 5(1):63. PubMed ID: 28851463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse Models of
    Batra R; Lee CW
    Front Cell Neurosci; 2017; 11():196. PubMed ID: 28729824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.