These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35646489)

  • 1. Chromatin accessibility landscape of stromal subpopulations reveals distinct metabolic and inflammatory features of porcine subcutaneous and visceral adipose tissue.
    Sun W; Zhang T; Hu S; Tang Q; Long X; Yang X; Gun S; Chen L
    PeerJ; 2022; 10():e13250. PubMed ID: 35646489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression regional differences in human subcutaneous adipose tissue.
    Passaro A; Miselli MA; Sanz JM; Dalla Nora E; Morieri ML; Colonna R; Pišot R; Zuliani G
    BMC Genomics; 2017 Feb; 18(1):202. PubMed ID: 28231762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental programming: Transcriptional regulation of visceral and subcutaneous adipose by prenatal bisphenol-A in female sheep.
    Dou JF; Puttabyatappa M; Padmanabhan V; Bakulski KM
    Chemosphere; 2020 Sep; 255():127000. PubMed ID: 32417515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging.
    Christen T; Sheikine Y; Rocha VZ; Hurwitz S; Goldfine AB; Di Carli M; Libby P
    JACC Cardiovasc Imaging; 2010 Aug; 3(8):843-51. PubMed ID: 20705265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of exosomal miRNAs derived from subcutaneous and visceral adipose tissues: Determination of targets for the treatment of obesity and associated metabolic disorders.
    Yang Z; Wei Z; Wu X; Yang H
    Mol Med Rep; 2018 Sep; 18(3):3314-3324. PubMed ID: 30066923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study.
    Wolfs MG; Rensen SS; Bruin-Van Dijk EJ; Verdam FJ; Greve JW; Sanjabi B; Bruinenberg M; Wijmenga C; van Haeften TW; Buurman WA; Franke L; Hofker MH
    BMC Med Genomics; 2010 Aug; 3():34. PubMed ID: 20687939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response.
    Klimcáková E; Roussel B; Márquez-Quiñones A; Kovácová Z; Kováciková M; Combes M; Siklová-Vítková M; Hejnová J; Srámková P; Bouloumié A; Viguerie N; Stich V; Langin D
    J Clin Endocrinol Metab; 2011 Jan; 96(1):E73-82. PubMed ID: 21047918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome Profiling of Adipose Tissue Reveals Depot-Specific Metabolic Alterations Among Patients with Colorectal Cancer.
    Haffa M; Holowatyj AN; Kratz M; Toth R; Benner A; Gigic B; Habermann N; Schrotz-King P; Böhm J; Brenner H; Schneider M; Ulrich A; Herpel E; Schirmacher P; Straub BK; Nattenmüller J; Kauczor HU; Lin T; Ball CR; Ulrich CM; Glimm H; Scherer D
    J Clin Endocrinol Metab; 2019 Nov; 104(11):5225-5237. PubMed ID: 31225875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling adipose tissue proteomic landscapes in severe obesity: insights into metabolic complications and potential biomarkers.
    Hruska P; Kucera J; Kuruczova D; Buzga M; Pekar M; Holeczy P; Potesil D; Zdrahal Z; Bienertova-Vasku J
    Am J Physiol Endocrinol Metab; 2023 Nov; 325(5):E562-E580. PubMed ID: 37792298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study.
    Liesenfeld DB; Grapov D; Fahrmann JF; Salou M; Scherer D; Toth R; Habermann N; Böhm J; Schrotz-King P; Gigic B; Schneider M; Ulrich A; Herpel E; Schirmacher P; Fiehn O; Lampe JW; Ulrich CM
    Am J Clin Nutr; 2015 Aug; 102(2):433-43. PubMed ID: 26156741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human visceral fat depot has a unique inflammatory profile.
    Alvehus M; Burén J; Sjöström M; Goedecke J; Olsson T
    Obesity (Silver Spring); 2010 May; 18(5):879-83. PubMed ID: 20186138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pro- and anti-inflammatory cytokine gene expression in subcutaneous and visceral fat in severe obesity.
    Spoto B; Di Betta E; Mattace-Raso F; Sijbrands E; Vilardi A; Parlongo RM; Pizzini P; Pisano A; Vermi W; Testa A; Cutrupi S; D'Arrigo G; Lonardi S; Tripepi G; Cancarini G; Zoccali C
    Nutr Metab Cardiovasc Dis; 2014 Oct; 24(10):1137-43. PubMed ID: 24984824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity.
    Gerhard GS; Styer AM; Strodel WE; Roesch SL; Yavorek A; Carey DJ; Wood GC; Petrick AT; Gabrielsen J; Ibele A; Benotti P; Rolston DD; Still CD; Argyropoulos G
    Int J Obes (Lond); 2014 Mar; 38(3):371-8. PubMed ID: 23949615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue.
    O'Rourke RW; Metcalf MD; White AE; Madala A; Winters BR; Maizlin II; Jobe BA; Roberts CT; Slifka MK; Marks DL
    Int J Obes (Lond); 2009 Sep; 33(9):978-90. PubMed ID: 19564875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots.
    Peinado JR; Jimenez-Gomez Y; Pulido MR; Ortega-Bellido M; Diaz-Lopez C; Padillo FJ; Lopez-Miranda J; Vazquez-Martínez R; Malagón MM
    Proteomics; 2010 Sep; 10(18):3356-66. PubMed ID: 20706982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence.
    Villaret A; Galitzky J; Decaunes P; Estève D; Marques MA; Sengenès C; Chiotasso P; Tchkonia T; Lafontan M; Kirkland JL; Bouloumié A
    Diabetes; 2010 Nov; 59(11):2755-63. PubMed ID: 20713685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Role of the Inflammasome in the Low Storage Capacity of the Abdominal Subcutaneous Adipose Tissue in Obese Adolescents.
    Kursawe R; Dixit VD; Scherer PE; Santoro N; Narayan D; Gordillo R; Giannini C; Lopez X; Pierpont B; Nouws J; Shulman GI; Caprio S
    Diabetes; 2016 Mar; 65(3):610-8. PubMed ID: 26718495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors.
    Hwang I; Kim JB
    Diabetes Metab J; 2019 Dec; 43(6):752-762. PubMed ID: 31902145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of gene transcription between subcutaneous and visceral adipose tissue in Chinese adults.
    Zha JM; Di WJ; Zhu T; Xie Y; Yu J; Liu J; Chen P; Ding G
    Endocr J; 2009; 56(8):935-44. PubMed ID: 19564704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD90 serves as differential modulator of subcutaneous and visceral adipose-derived stem cells by regulating AKT activation that influences adipose tissue and metabolic homeostasis.
    Pan Z; Zhou Z; Zhang H; Zhao H; Song P; Wang D; Yin J; Zhao W; Xie Z; Wang F; Li Y; Guo C; Zhu F; Zhang L; Wang Q
    Stem Cell Res Ther; 2019 Nov; 10(1):355. PubMed ID: 31779686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.