These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35646545)

  • 1. A clickable photoaffinity probe of betulinic acid identifies tropomyosin as a target.
    Martín-Acosta P; Meng Q; Klimek J; Reddy AP; David L; Petrie SK; Li BX; Xiao X
    Acta Pharm Sin B; 2022 May; 12(5):2406-2416. PubMed ID: 35646545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Sulfonamide Photoaffinity Inhibitors for Probing Cellular γ-Secretase.
    Crump CJ; Murrey HE; Ballard TE; Am Ende CW; Wu X; Gertsik N; Johnson DS; Li YM
    ACS Chem Neurosci; 2016 Aug; 7(8):1166-73. PubMed ID: 27253220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and synthesis of a clickable, photoreactive amino acid
    Han P; Wang F; Bao S; Yao G; Wan X; Liu J; Jiang H
    RSC Adv; 2023 Jan; 13(2):866-872. PubMed ID: 36686919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of clickable active site-directed photoaffinity probes for γ-secretase.
    Crump CJ; am Ende CW; Ballard TE; Pozdnyakov N; Pettersson M; Chau DM; Bales KR; Li YM; Johnson DS
    Bioorg Med Chem Lett; 2012 Apr; 22(8):2997-3000. PubMed ID: 22418280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates.
    Thomas JR; Brittain SM; Lipps J; Llamas L; Jain RK; Schirle M
    Methods Mol Biol; 2017; 1647():1-18. PubMed ID: 28808992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pepstatin-Based Probes for Photoaffinity Labeling of Aspartic Proteases and Application to Target Identification.
    Chen S; Liang C; Li H; Yu W; Prothiwa M; Kopczynski D; Loroch S; Fransen M; Verhelst SHL
    ACS Chem Biol; 2023 Apr; 18(4):686-692. PubMed ID: 36920024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clickable gold-nanoparticles as generic probe precursors for facile photoaffinity labeling application.
    Mori K; Sakurai K
    Org Biomol Chem; 2021 Feb; 19(6):1268-1273. PubMed ID: 33331841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fishing for Drug Targets: A Focus on Diazirine Photoaffinity Probe Synthesis.
    Hill JR; Robertson AAB
    J Med Chem; 2018 Aug; 61(16):6945-6963. PubMed ID: 29683660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of lamins as the molecular targets of LBL1 using a clickable photoaffinity probe.
    Xiao X; Li BX
    Methods Enzymol; 2020; 633():185-201. PubMed ID: 32046845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of fluorescent glycolipid photoaffinity probes and their photoreactivity.
    Sakurai K; Yamaguchi T; Mizuno S
    Bioorg Med Chem Lett; 2016 Oct; 26(20):5110-5115. PubMed ID: 27612546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A diazirine-based photoaffinity etoposide probe for labeling topoisomerase II.
    Chee GL; Yalowich JC; Bodner A; Wu X; Hasinoff BB
    Bioorg Med Chem; 2010 Jan; 18(2):830-8. PubMed ID: 20006518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoproteomics, A Broad Avenue to Target Deconvolution.
    Gao Y; Ma M; Li W; Lei X
    Adv Sci (Weinh); 2024 Feb; 11(8):e2305608. PubMed ID: 38095542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Specific Binding Proteins to Photoaffinity Linkers for Efficient Deconvolution of Target Protein.
    Park J; Koh M; Koo JY; Lee S; Park SB
    ACS Chem Biol; 2016 Jan; 11(1):44-52. PubMed ID: 26502221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in target characterization and identification by photoaffinity probes.
    Sumranjit J; Chung SJ
    Molecules; 2013 Aug; 18(9):10425-51. PubMed ID: 23994969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for clickable photoaffinity labeling and quantitative chemical proteomics.
    Lee W; Huang Z; Am Ende CW; Seneviratne U
    STAR Protoc; 2021 Jun; 2(2):100593. PubMed ID: 34169287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-linking chemistry and biology: development of multifunctional photoaffinity probes.
    Tomohiro T; Hashimoto M; Hatanaka Y
    Chem Rec; 2005; 5(6):385-95. PubMed ID: 16278837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment.
    Park SY; Kim HJ; Kim KR; Lee SK; Lee CK; Park KK; Chung WY
    Toxicol Appl Pharmacol; 2014 Mar; 275(2):152-62. PubMed ID: 24463094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the reactivity of carbohydrate photoaffinity probes with different photoreactive groups.
    Sakurai K; Ozawa S; Yamada R; Yasui T; Mizuno S
    Chembiochem; 2014 Jul; 15(10):1399-403. PubMed ID: 24866937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoaffinity labeling approaches to elucidate lipid-protein interactions.
    Yu W; Baskin JM
    Curr Opin Chem Biol; 2022 Aug; 69():102173. PubMed ID: 35724595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes.
    Hellyer SD; Aggarwal S; Chen ANY; Leach K; Lapinsky DJ; Gregory KJ
    ACS Chem Neurosci; 2020 Jun; 11(11):1597-1609. PubMed ID: 32396330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.