BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35646590)

  • 1. Fully integrated photoacoustic microscopy and photoplethysmography of human
    Ahn J; Baik JW; Kim Y; Choi K; Park J; Kim H; Kim JY; Kim HH; Nam SH; Kim C
    Photoacoustics; 2022 Sep; 27():100374. PubMed ID: 35646590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Polydimethylsiloxane (PDMS) Pulsatile Vascular Tissue Phantoms for the In-Vitro Investigation of Light Tissue Interaction in Photoplethysmography.
    Nomoni M; May JM; Kyriacou PA
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32751541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artifact reduction based on Empirical Mode Decomposition (EMD) in photoplethysmography for pulse rate detection.
    Wang Q; Yang P; Zhang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():959-62. PubMed ID: 21096980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using CNN and HHT to Predict Blood Pressure Level Based on Photoplethysmography and Its Derivatives.
    Sun X; Zhou L; Chang S; Liu Z
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33924324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers.
    Ahn J; Kim JY; Choi W; Kim C
    Photoacoustics; 2021 Sep; 23():100282. PubMed ID: 34258222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of Remote PPG Signal through Correspondence with Contact Sensor Signal.
    Kim SE; Yu SG; Kim NH; Suh KH; Lee EC
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waveform Analysis for Camera-based Photoplethysmography Imaging.
    Paul M; Yu X; Wu B; Weiss C; Antink CH; Blazek V; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2713-2718. PubMed ID: 31946455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of photoplethysmography signals for healthcare systems: An in-depth review.
    Loh HW; Xu S; Faust O; Ooi CP; Barua PD; Chakraborty S; Tan RS; Molinari F; Acharya UR
    Comput Methods Programs Biomed; 2022 Apr; 216():106677. PubMed ID: 35139459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and clinical translation of photoacoustic mammography.
    Shiina T; Toi M; Yagi T
    Biomed Eng Lett; 2018 May; 8(2):157-165. PubMed ID: 30603200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet.
    Charlton PH; Paliakaitė B; Pilt K; Bachler M; Zanelli S; Kulin D; Allen J; Hallab M; Bianchini E; Mayer CC; Terentes-Printzios D; Dittrich V; Hametner B; Veerasingam D; Žikić D; Marozas V
    Am J Physiol Heart Circ Physiol; 2022 Apr; 322(4):H493-H522. PubMed ID: 34951543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Multi-Wavelength Quality Assessment of Photoplethysmography Signals Using Modulation Spectrum Shape Features.
    Tiwari A; Gray G; Bondi P; Mahnam A; Falk TH
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust PPG-based Ambulatory Heart Rate Tracking Algorithm.
    Huang N; Selvaraj N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5929-5934. PubMed ID: 33019324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of peripheral photoplethysmographic morphology changes induced during a hand-elevation study.
    Hickey M; Phillips JP; Kyriacou PA
    J Clin Monit Comput; 2016 Oct; 30(5):727-36. PubMed ID: 26318315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence between Decomposed Components of Wrist and Finger PPG Signals by Imputing Missing Features and Resolving Ambiguous Features.
    Tsai PY; Huang CH; Guo JW; Li YC; Wu AA; Lin HJ; Wang TD
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography.
    Alqudah AM; Qananwah Q; M K Dagamseh A; Qazan S; Albadarneh A; Alzyout A
    Med Hypotheses; 2020 Oct; 143():109870. PubMed ID: 32470788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Morphological Variations of Photoplethysmography Signal in Human Epilepsy.
    Safavi SM; Valisharifabad N; Sabino RC; Tran D; Lin J; Lopour B; Chou PH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2687-2690. PubMed ID: 33018560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the origin of photoplethysmography using a multiwavelength Monte Carlo model.
    Chatterjee S; Budidha K; Kyriacou PA
    Physiol Meas; 2020 Sep; 41(8):084001. PubMed ID: 32585642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensor Fusion for Robust Heartbeat Detection during Driving.
    Warnecke JM; Boeker N; Spicher N; Wang J; Flormann M; Deserno TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():447-450. PubMed ID: 34891329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography.
    Spigulis J; Gailite L; Lihachev A; Erts R
    Appl Opt; 2007 Apr; 46(10):1754-9. PubMed ID: 17356618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.