These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 35646880)
1. Application of Microfluidics in Detection of Circulating Tumor Cells. Li C; He W; Wang N; Xi Z; Deng R; Liu X; Kang R; Xie L; Liu X Front Bioeng Biotechnol; 2022; 10():907232. PubMed ID: 35646880 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic biosensing of circulating tumor cells (CTCs): Recent progress and challenges in efficient diagnosis of cancer. Farshchi F; Hasanzadeh M Biomed Pharmacother; 2021 Feb; 134():111153. PubMed ID: 33360045 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances in Microfluidic Platforms Applied in Cancer Metastasis: Circulating Tumor Cells' (CTCs) Isolation and Tumor-On-A-Chip. Lin Z; Luo G; Du W; Kong T; Liu C; Liu Z Small; 2020 Mar; 16(9):e1903899. PubMed ID: 31747120 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic technologies for circulating tumor cell isolation. Cho H; Kim J; Song H; Sohn KY; Jeon M; Han KH Analyst; 2018 Jun; 143(13):2936-2970. PubMed ID: 29796523 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in microfluidic technologies for circulating tumor cells: enrichment, single-cell analysis, and liquid biopsy for clinical applications. Pei H; Li L; Han Z; Wang Y; Tang B Lab Chip; 2020 Nov; 20(21):3854-3875. PubMed ID: 33107879 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic applications on circulating tumor cell isolation and biomimicking of cancer metastasis. Xu X; Jiang Z; Wang J; Ren Y; Wu A Electrophoresis; 2020 Jun; 41(10-11):933-951. PubMed ID: 32144938 [TBL] [Abstract][Full Text] [Related]
7. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Shi J; Zhao C; Shen M; Chen Z; Liu J; Zhang S; Zhang Z Biosens Bioelectron; 2022 Apr; 202():114025. PubMed ID: 35078145 [TBL] [Abstract][Full Text] [Related]
8. Sorting Technology for Circulating Tumor Cells Based on Microfluidics. Hu D; Liu H; Tian Y; Li Z; Cui X ACS Comb Sci; 2020 Dec; 22(12):701-711. PubMed ID: 33052651 [TBL] [Abstract][Full Text] [Related]
9. The Discovery of Novel Circulating Cancer-Related Cells in Circulation Poses New Challenges to Microfluidic Devices for Enrichment and Detection. Wu M; Huang Y; Zhou Y; Zhao H; Lan Y; Yu Z; Jia C; Cong H; Zhao J Small Methods; 2022 Jul; 6(7):e2200226. PubMed ID: 35595707 [TBL] [Abstract][Full Text] [Related]
10. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. Farahinia A; Zhang W; Badea I Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300027 [TBL] [Abstract][Full Text] [Related]
11. Recent progress of nanostructure-based enrichment of circulating tumor cells and downstream analysis. Guo L; Liu C; Qi M; Cheng L; Wang L; Li C; Dong B Lab Chip; 2023 Mar; 23(6):1493-1523. PubMed ID: 36776104 [TBL] [Abstract][Full Text] [Related]
12. [Advances in isolation and enrichment of circulating tumor cells in microfluidic chips]. Du J; Liu X; Xu X Se Pu; 2014 Jan; 32(1):7-12. PubMed ID: 24783862 [TBL] [Abstract][Full Text] [Related]
13. Poly(ethylene oxide) Concentration Gradient-Based Microfluidic Isolation of Circulating Tumor Cells. Cheng Y; Zhang S; Qin L; Zhao J; Song H; Yuan Y; Sun J; Tian F; Liu C Anal Chem; 2023 Feb; 95(6):3468-3475. PubMed ID: 36725367 [TBL] [Abstract][Full Text] [Related]
14. EGFR mutation detection of lung circulating tumor cells using a multifunctional microfluidic chip. Wang Y; Gao W; Wu M; Zhang X; Liu W; Zhou Y; Jia C; Cong H; Chen X; Zhao J Talanta; 2021 Apr; 225():122057. PubMed ID: 33592778 [TBL] [Abstract][Full Text] [Related]
15. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous on-chip isolation and characterization of circulating tumor cell sub-populations. Lee J; Kwak B Biosens Bioelectron; 2020 Nov; 168():112564. PubMed ID: 32892118 [TBL] [Abstract][Full Text] [Related]
17. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related]
18. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales]. Cui J; Liu L; Li D; Piao X Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011 [TBL] [Abstract][Full Text] [Related]
19. Capturing Cancer: Emerging Microfluidic Technologies for the Capture and Characterization of Circulating Tumor Cells. Qian W; Zhang Y; Chen W Small; 2015 Aug; 11(32):3850-72. PubMed ID: 25993898 [TBL] [Abstract][Full Text] [Related]
20. A micropillar array-based microfluidic chip for label-free separation of circulating tumor cells: The best micropillar geometry? Rahmanian M; Sartipzadeh Hematabad O; Askari E; Shokati F; Bakhshi A; Moghadam S; Olfatbakhsh A; Al Sadat Hashemi E; Khorsand Ahmadi M; Morteza Naghib S; Sinha N; Tel J; Eslami Amirabadi H; den Toonder JMJ; Majidzadeh-A K J Adv Res; 2023 May; 47():105-121. PubMed ID: 35964874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]