BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35646884)

  • 1. Engineered
    Kim HS; Choi JA; Kim BY; Ferrer L; Choi JM; Wendisch VF; Lee JH
    Front Bioeng Biotechnol; 2022; 10():880277. PubMed ID: 35646884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vanillin production by Corynebacterium glutamicum using heterologous aromatic carboxylic acid reductases.
    Matsuzawa M; Ito J; Danjo K; Fukui K
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):58. PubMed ID: 38693567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics.
    Weiland F; Barton N; Kohlstedt M; Becker J; Wittmann C
    Metab Eng; 2023 Jan; 75():153-169. PubMed ID: 36563956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli.
    Kunjapur AM; Tarasova Y; Prather KL
    J Am Chem Soc; 2014 Aug; 136(33):11644-54. PubMed ID: 25076127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids.
    Kallscheuer N; Marienhagen J
    Microb Cell Fact; 2018 May; 17(1):70. PubMed ID: 29753327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanillin Production in
    García-Hidalgo J; Brink DP; Ravi K; Paul CJ; Lidén G; Gorwa-Grauslund MF
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways.
    Kogure T; Suda M; Hiraga K; Inui M
    Metab Eng; 2021 May; 65():232-242. PubMed ID: 33238211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of Protocatechuic Acid from
    Lubbers RJM; de Vries RP
    mBio; 2021 Jun; 12(3):e0039121. PubMed ID: 34154420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of long chain specific aldehyde reductase and its use in enhanced fatty alcohol production in E. coli.
    Fatma Z; Jawed K; Mattam AJ; Yazdani SS
    Metab Eng; 2016 Sep; 37():35-45. PubMed ID: 27134112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformations of aromatic aldehydes by acetogenic bacteria.
    Lux MF; Keith E; Hsu TD; Drake HL
    FEMS Microbiol Lett; 1990 Jan; 55(1-2):73-7. PubMed ID: 2328911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal aromatic aldehyde reduction (MARE) yeast platform for engineering vanillin production.
    Mo Q; Yuan J
    Biotechnol Biofuels Bioprod; 2024 Jan; 17(1):4. PubMed ID: 38184607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid.
    Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY
    Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum.
    Ding W; Si M; Zhang W; Zhang Y; Chen C; Zhang L; Lu Z; Chen S; Shen X
    Sci Rep; 2015 Jan; 5():8044. PubMed ID: 25622822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial gene inactivation of aldehyde dehydrogenases mitigates aldehyde oxidation catalyzed by E. coli resting cells.
    Butler ND; Anderson SR; Dickey RM; Nain P; Kunjapur AM
    Metab Eng; 2023 May; 77():294-305. PubMed ID: 37100193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols.
    Ni J; Gao YY; Tao F; Liu HY; Xu P
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1214-1217. PubMed ID: 29178412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).
    Hansen EH; Møller BL; Kock GR; Bünner CM; Kristensen C; Jensen OR; Okkels FT; Olsen CE; Motawia MS; Hansen J
    Appl Environ Microbiol; 2009 May; 75(9):2765-74. PubMed ID: 19286778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli.
    Okai N; Miyoshi T; Takeshima Y; Kuwahara H; Ogino C; Kondo A
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):135-45. PubMed ID: 26392137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of catabolic pathways for aromatic compounds in Corynebacterium glutamicum.
    Brinkrolf K; Brune I; Tauch A
    Genet Mol Res; 2006 Dec; 5(4):773-89. PubMed ID: 17183485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.