These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35646884)

  • 21. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum.
    Shen X; Liu S
    Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial engineering for aldehyde synthesis.
    Kunjapur AM; Prather KL
    Appl Environ Microbiol; 2015 Mar; 81(6):1892-901. PubMed ID: 25576610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment.
    Yi X; Gu H; Gao Q; Liu ZL; Bao J
    Biotechnol Biofuels; 2015; 8():153. PubMed ID: 26396591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic characterization of 4-cresol catabolism in Corynebacterium glutamicum.
    Li T; Chen X; Chaudhry MT; Zhang B; Jiang CY; Liu SJ
    J Biotechnol; 2014 Dec; 192 Pt B():355-65. PubMed ID: 24480572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.
    Kallscheuer N; Vogt M; Stenzel A; Gätgens J; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():47-55. PubMed ID: 27288926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tolerance and transcriptional analysis of Corynebacterium glutamicum on biotransformation of toxic furaldehyde and benzaldehyde inhibitory compounds.
    Zhou P; Khushk I; Gao Q; Bao J
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):951-963. PubMed ID: 30972584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct.
    Kubota T; Watanabe A; Suda M; Kogure T; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():322-330. PubMed ID: 27471069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidation of aromatic aldehyde to aromatic carboxylic acid by Burkholderia cepacia TM1 isolated from humus.
    Tanaka M; Hirokane Y
    J Biosci Bioeng; 2000; 90(3):341-3. PubMed ID: 16232868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic Engineering of Shikimic Acid-Producing
    Sato N; Kishida M; Nakano M; Hirata Y; Tanaka T
    Front Bioeng Biotechnol; 2020; 8():569406. PubMed ID: 33015020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum.
    Yang J; Zhu Y; Li J; Men Y; Sun Y; Ma Y
    Biotechnol Bioeng; 2015 Jan; 112(1):168-80. PubMed ID: 25060350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli.
    Rodriguez GM; Atsumi S
    Metab Eng; 2014 Sep; 25():227-37. PubMed ID: 25108218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of the intracellular environment for enhancing l-arginine production of Corynebacterium glutamicum by inactivation of H
    Man Z; Rao Z; Xu M; Guo J; Yang T; Zhang X; Xu Z
    Metab Eng; 2016 Nov; 38():310-321. PubMed ID: 27474351
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
    Liu Q; Zhang J; Wei XX; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1297-304. PubMed ID: 18040683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum.
    Hao N; Mu J; Hu N; Xu S; Shen P; Yan M; Li Y; Xu L
    Biotechnol Appl Biochem; 2016; 63(1):15-21. PubMed ID: 25630515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial production of 4-amino-1-butanol, a four-carbon amino alcohol.
    Prabowo CPS; Shin JH; Cho JS; Chae TU; Lee SY
    Biotechnol Bioeng; 2020 Sep; 117(9):2771-2780. PubMed ID: 32436991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids.
    Peng X; Shindo K; Kanoh K; Inomata Y; Choi SK; Misawa N
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):141-50. PubMed ID: 15812642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose.
    Chen Z; Huang J; Wu Y; Wu W; Zhang Y; Liu D
    Metab Eng; 2017 Jan; 39():151-158. PubMed ID: 27918882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.