BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 35646904)

  • 1. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria.
    Obi CD; Bhuiyan T; Dailey HA; Medlock AE
    Front Cell Dev Biol; 2022; 10():894591. PubMed ID: 35646904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissection of porphyrin-induced conformational dynamics in the heme biosynthesis enzyme ferrochelatase.
    Asuru AP; An M; Busenlehner LS
    Biochemistry; 2012 Sep; 51(36):7116-27. PubMed ID: 22897320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structure of the Complex between Yeast Frataxin and Ferrochelatase: CHARACTERIZATION AND PRE-STEADY STATE REACTION OF FERROUS IRON DELIVERY AND HEME SYNTHESIS.
    Söderberg C; Gillam ME; Ahlgren EC; Hunter GA; Gakh O; Isaya G; Ferreira GC; Al-Karadaghi S
    J Biol Chem; 2016 May; 291(22):11887-98. PubMed ID: 27026703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses.
    Qiu D; Xie M; Dai J; An W; Wei H; Tian C; Kempher ML; Zhou A; He Z; Gu B; Zhou J
    Appl Environ Microbiol; 2016 Sep; 82(17):5077-88. PubMed ID: 27287322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ubiquitous mitochondrial protein unfoldase CLPX regulates erythroid heme synthesis by control of iron utilization and heme synthesis enzyme activation and turnover.
    Rondelli CM; Perfetto M; Danoff A; Bergonia H; Gillis S; O'Neill L; Jackson L; Nicolas G; Puy H; West R; Phillips JD; Yien YY
    J Biol Chem; 2021 Aug; 297(2):100972. PubMed ID: 34280433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis.
    Yoon T; Cowan JA
    J Biol Chem; 2004 Jun; 279(25):25943-6. PubMed ID: 15123683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of protoporphyrin IX and metal derivatives to the active site of wild-type mouse ferrochelatase at low porphyrin-to-protein ratios.
    Lu Y; Sousa A; Franco R; Mangravita A; Ferreira GC; Moura I; Shelnutt JA
    Biochemistry; 2002 Jul; 41(26):8253-62. PubMed ID: 12081474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heme synthesis defect of mutants impaired in mitochondrial iron-sulfur protein biogenesis is caused by reversible inhibition of ferrochelatase.
    Lange H; Mühlenhoff U; Denzel M; Kispal G; Lill R
    J Biol Chem; 2004 Jul; 279(28):29101-8. PubMed ID: 15128732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the function of active site residues in the catalytic mechanism of human ferrochelatase.
    Medlock AE; Najahi-Missaoui W; Shiferaw MT; Albetel AN; Lanzilotta WN; Dailey HA
    Biochem J; 2021 Sep; 478(17):3239-3252. PubMed ID: 34402499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pi-helix switch selective for porphyrin deprotonation and product release in human ferrochelatase.
    Medlock AE; Dailey TA; Ross TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2007 Nov; 373(4):1006-16. PubMed ID: 17884090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferrochelatase activity of plant frataxin.
    Armas AM; Balparda M; Terenzi A; Busi MV; Pagani MA; Gomez-Casati DF
    Biochimie; 2019 Jan; 156():118-122. PubMed ID: 30342111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman Spectroscopic Examination of Ferrochelatase-induced Porphyrin Distortion.
    Franco R; Al-Karadaghi S; Ferreira GC
    J Porphyr Phthalocyanines; 2011 May; 15(5):357-363. PubMed ID: 21776189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Product release rather than chelation determines metal specificity for ferrochelatase.
    Medlock AE; Carter M; Dailey TA; Dailey HA; Lanzilotta WN
    J Mol Biol; 2009 Oct; 393(2):308-19. PubMed ID: 19703464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QM/MM study of the insertion of metal ion into protoporphyrin IX by ferrochelatase.
    Wang Y; Shen Y; Ryde U
    J Inorg Biochem; 2009 Dec; 103(12):1680-6. PubMed ID: 19850353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FERROCHELATASE: THE CONVERGENCE OF THE PORPHYRIN BIOSYNTHESIS AND IRON TRANSPORT PATHWAYS.
    Hunter GA; Al-Karadaghi S; Ferreira GC
    J Porphyr Phthalocyanines; 2011; 15(5-6):350-356. PubMed ID: 21852895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Ferrochelatase: Insights for the Mechanism of Ferrous Iron Approaching Protoporphyrin IX by QM/MM and QTCP Free Energy Studies.
    Wu J; Wen S; Zhou Y; Chao H; Shen Y
    J Chem Inf Model; 2016 Dec; 56(12):2421-2433. PubMed ID: 27801584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ferrochelatase π-helix: Implications from examining the role of the conserved π-helix glutamates in porphyrin metalation and product release.
    Gillam ME; Hunter GA; Ferreira GC
    Arch Biochem Biophys; 2018 Apr; 644():37-46. PubMed ID: 29481781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abortive assembly of succinate-ubiquinone reductase (complex II) in a ferrochelatase-deficient mutant of Escherichia coli.
    Nihei C; Nakayashiki T; Nakamura K; Inokuchi H; Gennis RB; Kojima S; Kita K
    Mol Genet Genomics; 2001 May; 265(3):394-404. PubMed ID: 11405622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal ion selectivity and substrate inhibition in the metal ion chelation catalyzed by human ferrochelatase.
    Davidson RE; Chesters CJ; Reid JD
    J Biol Chem; 2009 Dec; 284(49):33795-9. PubMed ID: 19767646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis.
    Qi Z; O'Brian MR
    Mol Cell; 2002 Jan; 9(1):155-62. PubMed ID: 11804594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.