These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 35646923)

  • 1. Tumor-Derived Lactate Creates a Favorable Niche for Tumor
    Jin M; Cao W; Chen B; Xiong M; Cao G
    Front Cell Dev Biol; 2022; 10():808859. PubMed ID: 35646923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression.
    Chen L; Huang L; Gu Y; Cang W; Sun P; Xiang Y
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment.
    Pérez-Tomás R; Pérez-Guillén I
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inflammatory Components of the Thyroid Cancer Microenvironment: An Avenue for Identification of Novel Biomarkers.
    Jarboe T; Tuli NY; Chakraborty S; Maniyar RR; DeSouza N; Xiu-Min Li ; Moscatello A; Geliebter J; Tiwari RK
    Adv Exp Med Biol; 2021; 1350():1-31. PubMed ID: 34888842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches.
    de la Cruz-López KG; Castro-Muñoz LJ; Reyes-Hernández DO; García-Carrancá A; Manzo-Merino J
    Front Oncol; 2019; 9():1143. PubMed ID: 31737570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of Cell-Cell Communication in Anaplastic Thyroid Cancer as an Immunotherapeutic Opportunity.
    Chakraborty S; Carnazza M; Jarboe T; DeSouza N; Li XM; Moscatello A; Geliebter J; Tiwari RK
    Adv Exp Med Biol; 2021; 1350():33-66. PubMed ID: 34888843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses.
    Morrot A; da Fonseca LM; Salustiano EJ; Gentile LB; Conde L; Filardy AA; Franklim TN; da Costa KM; Freire-de-Lima CG; Freire-de-Lima L
    Front Oncol; 2018; 8():81. PubMed ID: 29629338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination.
    Wang JH; Mao L; Wang J; Zhang X; Wu M; Wen Q; Yu SC
    Cell Oncol (Dordr); 2023 Jun; 46(3):465-480. PubMed ID: 36656507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate in the tumor microenvironment: A rising star for targeted tumor therapy.
    Li Z; Wang Q; Huang X; Yang M; Zhou S; Li Z; Fang Z; Tang Y; Chen Q; Hou H; Li L; Fei F; Wang Q; Wu Y; Gong A
    Front Nutr; 2023; 10():1113739. PubMed ID: 36875841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crosstalking of lactate-Histone lactylation and tumor.
    Rong Y; Dong F; Zhang G; Tang M; Zhao X; Zhang Y; Tao P; Cai H
    Proteomics Clin Appl; 2023 Sep; 17(5):e2200102. PubMed ID: 36853081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives.
    Mao X; Xu J; Wang W; Liang C; Hua J; Liu J; Zhang B; Meng Q; Yu X; Shi S
    Mol Cancer; 2021 Oct; 20(1):131. PubMed ID: 34635121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment.
    Liu T; Zhou L; Li D; Andl T; Zhang Y
    Front Cell Dev Biol; 2019; 7():60. PubMed ID: 31106200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment.
    Zhang J; Fan J; Zeng X; Nie M; Luan J; Wang Y; Ju D; Yin K
    Acta Pharm Sin B; 2021 Mar; 11(3):609-620. PubMed ID: 33777671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarities between Tumour Immune Response and Chronic Wound Microenvironment: Influence of Mesenchymal Stromal/Stem Cells.
    Peta KT; Ambele MA; Pepper MS
    J Immunol Res; 2021; 2021():6649314. PubMed ID: 33860061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactylation, a Novel Metabolic Reprogramming Code: Current Status and Prospects.
    Chen AN; Luo Y; Yang YH; Fu JT; Geng XM; Shi JP; Yang J
    Front Immunol; 2021; 12():688910. PubMed ID: 34177945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment.
    Yang M; Li J; Gu P; Fan X
    Bioact Mater; 2021 Jul; 6(7):1973-1987. PubMed ID: 33426371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy.
    Wegiel B; Vuerich M; Daneshmandi S; Seth P
    Front Oncol; 2018; 8():284. PubMed ID: 30151352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?
    O'Malley G; Heijltjes M; Houston AM; Rani S; Ritter T; Egan LJ; Ryan AE
    Oncotarget; 2016 Sep; 7(37):60752-60774. PubMed ID: 27542276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNAs in the Tumor Microenvironment.
    Patil N; Allgayer H; Leupold JH
    Adv Exp Med Biol; 2020; 1277():1-31. PubMed ID: 33119862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.