These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 35647052)
1. Predicting the Prognosis of Patients in the Coronary Care Unit: A Novel Multi-Category Machine Learning Model Using XGBoost. Wang X; Zhu T; Xia M; Liu Y; Wang Y; Wang X; Zhuang L; Zhong D; Zhu J; He H; Weng S; Zhu J; Lai D Front Cardiovasc Med; 2022; 9():764629. PubMed ID: 35647052 [TBL] [Abstract][Full Text] [Related]
2. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. Hou N; Li M; He L; Xie B; Wang L; Zhang R; Yu Y; Sun X; Pan Z; Wang K J Transl Med; 2020 Dec; 18(1):462. PubMed ID: 33287854 [TBL] [Abstract][Full Text] [Related]
3. A Retrospective Cohort Study: Predicting 90-Day Mortality for ICU Trauma Patients with a Machine Learning Algorithm Using XGBoost Using MIMIC-III Database. Yang S; Cao L; Zhou Y; Hu C J Multidiscip Healthc; 2023; 16():2625-2640. PubMed ID: 37701177 [TBL] [Abstract][Full Text] [Related]
4. Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases. Cai D; Xiao T; Zou A; Mao L; Chi B; Wang Y; Wang Q; Ji Y; Sun L Front Cardiovasc Med; 2022; 9():964894. PubMed ID: 36158815 [TBL] [Abstract][Full Text] [Related]
5. A 5-year survival status prognosis of nonmetastatic cervical cancer patients through machine learning algorithms. Yu W; Lu Y; Shou H; Xu H; Shi L; Geng X; Song T Cancer Med; 2023 Mar; 12(6):6867-6876. PubMed ID: 36479910 [TBL] [Abstract][Full Text] [Related]
6. Clinical decision support systems for 3-month mortality in elderly patients admitted to ICU with ischemic stroke using interpretable machine learning. Huang J; Liu X; Jin W Digit Health; 2024; 10():20552076241280126. PubMed ID: 39314817 [TBL] [Abstract][Full Text] [Related]
7. Surgical Methods and Social Factors Are Associated With Long-Term Survival in Follicular Thyroid Carcinoma: Construction and Validation of a Prognostic Model Based on Machine Learning Algorithms. Mao Y; Huang Y; Xu L; Liang J; Lin W; Huang H; Li L; Wen J; Chen G Front Oncol; 2022; 12():816427. PubMed ID: 35800057 [TBL] [Abstract][Full Text] [Related]
8. Twenty-eight-day in-hospital mortality prediction for elderly patients with ischemic stroke in the intensive care unit: Interpretable machine learning models. Huang J; Jin W; Duan X; Liu X; Shu T; Fu L; Deng J; Chen H; Liu G; Jiang Y; Liu Z Front Public Health; 2022; 10():1086339. PubMed ID: 36711330 [TBL] [Abstract][Full Text] [Related]
9. Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study. Woodman RJ; Bryant K; Sorich MJ; Pilotto A; Mangoni AA J Med Internet Res; 2021 Jun; 23(6):e26139. PubMed ID: 34152274 [TBL] [Abstract][Full Text] [Related]
10. Establishment of ICU Mortality Risk Prediction Models with Machine Learning Algorithm Using MIMIC-IV Database. Pang K; Li L; Ouyang W; Liu X; Tang Y Diagnostics (Basel); 2022 Apr; 12(5):. PubMed ID: 35626224 [No Abstract] [Full Text] [Related]
11. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study. Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984 [TBL] [Abstract][Full Text] [Related]
12. Machine learning for the prediction of acute kidney injury in patients with sepsis. Yue S; Li S; Huang X; Liu J; Hou X; Zhao Y; Niu D; Wang Y; Tan W; Wu J J Transl Med; 2022 May; 20(1):215. PubMed ID: 35562803 [TBL] [Abstract][Full Text] [Related]
13. Machine learning models for predicting critical illness risk in hospitalized patients with COVID-19 pneumonia. Liu Q; Pang B; Li H; Zhang B; Liu Y; Lai L; Le W; Li J; Xia T; Zhang X; Ou C; Ma J; Li S; Guo X; Zhang S; Zhang Q; Jiang M; Zeng Q J Thorac Dis; 2021 Feb; 13(2):1215-1229. PubMed ID: 33717594 [TBL] [Abstract][Full Text] [Related]
14. A machine learning model based on ultrasound image features to assess the risk of sentinel lymph node metastasis in breast cancer patients: Applications of scikit-learn and SHAP. Zhang G; Shi Y; Yin P; Liu F; Fang Y; Li X; Zhang Q; Zhang Z Front Oncol; 2022; 12():944569. PubMed ID: 35957890 [TBL] [Abstract][Full Text] [Related]
15. Machine learning models to predict 30-day mortality for critical patients with myocardial infarction: a retrospective analysis from MIMIC-IV database. Lin X; Pan X; Yang Y; Yang W; Wang X; Zou K; Wang Y; Xiu J; Yu P; Lu J; Zhao Y; Lu H Front Cardiovasc Med; 2024; 11():1368022. PubMed ID: 39371393 [TBL] [Abstract][Full Text] [Related]
16. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
17. Early prediction of acute kidney injury in patients with gastrointestinal bleeding admitted to the intensive care unit based on extreme gradient boosting. Shi H; Shen Y; Li L Front Med (Lausanne); 2023; 10():1221602. PubMed ID: 37720504 [TBL] [Abstract][Full Text] [Related]
18. Application of an Interpretable Machine Learning Model to Predict Lymph Node Metastasis in Patients with Laryngeal Carcinoma. Feng M; Zhang J; Zhou X; Mo H; Jia L; Zhang C; Hu Y; Yuan W J Oncol; 2022; 2022():6356399. PubMed ID: 36411795 [TBL] [Abstract][Full Text] [Related]
19. Applying interpretable machine learning algorithms to predict risk factors for permanent stoma in patients after TME. Liu Y; Zhao S; Du W; Tian Z; Chi H; Chao C; Shen W Front Surg; 2023; 10():1125875. PubMed ID: 37035560 [TBL] [Abstract][Full Text] [Related]
20. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database. Hao N; Sun P; Zhao W; Li X Ecotoxicol Environ Saf; 2023 Apr; 255():114806. PubMed ID: 36948010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]