BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35647082)

  • 1. The Atypical Cadherin FAT1 Limits Mitochondrial Respiration and Proliferation of Vascular Smooth Muscle Cells.
    Riascos-Bernal DF; Maira A; Sibinga NES
    Front Cardiovasc Med; 2022; 9():905717. PubMed ID: 35647082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of mitochondrial function and cell growth by the atypical cadherin Fat1.
    Cao LL; Riascos-Bernal DF; Chinnasamy P; Dunaway CM; Hou R; Pujato MA; O'Rourke BP; Miskolci V; Guo L; Hodgson L; Fiser A; Sibinga NE
    Nature; 2016 Nov; 539(7630):575-578. PubMed ID: 27828948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The FAT1 Cadherin Drives Vascular Smooth Muscle Cell Migration.
    Riascos-Bernal DF; Ressa G; Korrapati A; Sibinga NES
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals.
    Hou R; Liu L; Anees S; Hiroyasu S; Sibinga NE
    J Cell Biol; 2006 May; 173(3):417-29. PubMed ID: 16682528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atrophin proteins interact with the Fat1 cadherin and regulate migration and orientation in vascular smooth muscle cells.
    Hou R; Sibinga NE
    J Biol Chem; 2009 Mar; 284(11):6955-65. PubMed ID: 19131340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation.
    Bruder-Nascimento T; Chinnasamy P; Riascos-Bernal DF; Cau SB; Callera GE; Touyz RM; Tostes RC; Sibinga NE
    J Mol Cell Cardiol; 2014 Jan; 66():18-26. PubMed ID: 24445059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of M3AChR (Type 3 Muscarinic Acetylcholine Receptor) and Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) Signaling by Choline Alleviates Vascular Smooth Muscle Cell Phenotypic Switching and Vascular Remodeling.
    He X; Deng J; Yu XJ; Yang S; Yang Y; Zang WJ
    Arterioscler Thromb Vasc Biol; 2020 Nov; 40(11):2649-2664. PubMed ID: 32938216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug-eluting stent specifically designed to target vascular smooth muscle cell phenotypic modulation attenuated restenosis through the YAP pathway.
    Huang C; Zhang W; Zhu Y
    Am J Physiol Heart Circ Physiol; 2019 Sep; 317(3):H541-H551. PubMed ID: 31298560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense oligonucleotides to stromelysin mRNA inhibit injury-induced proliferation of arterial smooth muscle cells.
    Lövdahl C; Thyberg J; Cercek B; Blomgren K; Dimayuga P; Kallin B; Hultgårdh-Nilsson A
    Histol Histopathol; 1999 Oct; 14(4):1101-12. PubMed ID: 10506926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation, Culture, and Characterization of Vascular Smooth Muscle Cells.
    Patel JJ; Srivastava S; Siow RC
    Methods Mol Biol; 2016; 1430():91-105. PubMed ID: 27172948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo.
    Iaconetti C; De Rosa S; Polimeni A; Sorrentino S; Gareri C; Carino A; Sabatino J; Colangelo M; Curcio A; Indolfi C
    Cardiovasc Res; 2015 Sep; 107(4):522-33. PubMed ID: 25994172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mitochondrial bioenergetics and reactive oxygen species in coronary collateral growth.
    Pung YF; Sam WJ; Hardwick JP; Yin L; Ohanyan V; Logan S; Di Vincenzo L; Chilian WM
    Am J Physiol Heart Circ Physiol; 2013 Nov; 305(9):H1275-80. PubMed ID: 23997092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity.
    Frismantiene A; Philippova M; Erne P; Resink TJ
    Cell Signal; 2018 Dec; 52():48-64. PubMed ID: 30172025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-22 Is a Novel Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation and Neointima Formation.
    Yang F; Chen Q; He S; Yang M; Maguire EM; An W; Afzal TA; Luong LA; Zhang L; Xiao Q
    Circulation; 2018 Apr; 137(17):1824-1841. PubMed ID: 29246895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis.
    Huynh DTN; Heo KS
    Arch Pharm Res; 2021 Dec; 44(12):1051-1061. PubMed ID: 34743301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of oxidative stress in the process of vascular remodeling following coronary revascularization.
    Gallo G; Pierelli G; Forte M; Coluccia R; Volpe M; Rubattu S
    Int J Cardiol; 2018 Oct; 268():27-33. PubMed ID: 29803340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications.
    Jain M; Chauhan AK
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145.
    Zhang YN; Xie BD; Sun L; Chen W; Jiang SL; Liu W; Bian F; Tian H; Li RK
    J Cell Mol Med; 2016 Jun; 20(6):1049-61. PubMed ID: 26992033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated c-fos expression is correlated with phenotypic switching of human vascular smooth muscle cells derived from lower limb venous varicosities.
    Guo Z; Luo C; Zhu T; Li L; Zhang W
    J Vasc Surg Venous Lymphat Disord; 2021 Jan; 9(1):242-251. PubMed ID: 32360331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria.
    Liu YZ; Li ZX; Zhang LL; Wang D; Liu YP
    Front Cardiovasc Med; 2022; 9():972836. PubMed ID: 36312244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.