These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35647177)
1. Fatty acid metabolism of Quinonez CG; Lee JJ; Lim J; Odell M; Lawson CP; Anyogu A; Raheem S; Eoh H Microb Cell; 2022 May; 9(5):123-125. PubMed ID: 35647177 [TBL] [Abstract][Full Text] [Related]
2. The Role of Fatty Acid Metabolism in Drug Tolerance of Mycobacterium tuberculosis. Quinonez CG; Lee JJ; Lim J; Odell M; Lawson CP; Anyogu A; Raheem S; Eoh H mBio; 2022 Feb; 13(1):e0355921. PubMed ID: 35012349 [TBL] [Abstract][Full Text] [Related]
3. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Eoh H; Rhee KY Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4976-81. PubMed ID: 24639517 [TBL] [Abstract][Full Text] [Related]
4. Metabolic adaptation of two in silico mutants of Mycobacterium tuberculosis during infection. López-Agudelo VA; Baena A; Ramirez-Malule H; Ochoa S; Barrera LF; Ríos-Estepa R BMC Syst Biol; 2017 Nov; 11(1):107. PubMed ID: 29157227 [TBL] [Abstract][Full Text] [Related]
5. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Marrero J; Rhee KY; Schnappinger D; Pethe K; Ehrt S Proc Natl Acad Sci U S A; 2010 May; 107(21):9819-24. PubMed ID: 20439709 [TBL] [Abstract][Full Text] [Related]
6. Qi N; She GL; Du W; Ye BC Front Microbiol; 2021; 12():603835. PubMed ID: 33613477 [No Abstract] [Full Text] [Related]
7. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nandakumar M; Nathan C; Rhee KY Nat Commun; 2014 Jun; 5():4306. PubMed ID: 24978671 [TBL] [Abstract][Full Text] [Related]
8. Lessons Learnt and the Way Forward for Drug Development Against Isocitrate Lyase from Antil M; Gupta V Protein Pept Lett; 2022; 29(12):1031-1041. PubMed ID: 36201276 [TBL] [Abstract][Full Text] [Related]
9. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Muñoz-Elías EJ; Upton AM; Cherian J; McKinney JD Mol Microbiol; 2006 Jun; 60(5):1109-22. PubMed ID: 16689789 [TBL] [Abstract][Full Text] [Related]
10. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship. Tomioka H Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755 [TBL] [Abstract][Full Text] [Related]
11. Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis. Lee JJ; Lim J; Gao S; Lawson CP; Odell M; Raheem S; Woo J; Kang SH; Kang SS; Jeon BY; Eoh H Sci Rep; 2018 May; 8(1):8506. PubMed ID: 29855554 [TBL] [Abstract][Full Text] [Related]
12. Genetic factors affecting storage and utilization of lipids during dormancy in Sturm A; Sun P; Avila-Pacheco J; Clatworthy AE; Bloom-Ackermann Z; Wuo MG; Gomez JE; Jin S; Clish CB; Kiessling LL; Hung DT mBio; 2024 Feb; 15(2):e0320823. PubMed ID: 38236034 [No Abstract] [Full Text] [Related]
13. Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis. Upton AM; McKinney JD Microbiology (Reading); 2007 Dec; 153(Pt 12):3973-3982. PubMed ID: 18048912 [TBL] [Abstract][Full Text] [Related]
14. The Nitrogen Regulator GlnR Directly Controls Transcription of the Liu WB; Liu XX; Shen MJ; She GL; Ye BC J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30745367 [No Abstract] [Full Text] [Related]
15. Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Puckett S; Trujillo C; Wang Z; Eoh H; Ioerger TR; Krieger I; Sacchettini J; Schnappinger D; Rhee KY; Ehrt S Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2225-E2232. PubMed ID: 28265055 [TBL] [Abstract][Full Text] [Related]
16. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Gould TA; van de Langemheen H; Muñoz-Elías EJ; McKinney JD; Sacchettini JC Mol Microbiol; 2006 Aug; 61(4):940-7. PubMed ID: 16879647 [TBL] [Abstract][Full Text] [Related]
17. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Eoh H; Liu R; Lim J; Lee JJ; Sell P Front Cell Infect Microbiol; 2022; 12():958240. PubMed ID: 36072228 [TBL] [Abstract][Full Text] [Related]
18. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. Marrero J; Trujillo C; Rhee KY; Ehrt S PLoS Pathog; 2013 Jan; 9(1):e1003116. PubMed ID: 23326232 [TBL] [Abstract][Full Text] [Related]
19. Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. Lee YV; Wahab HA; Choong YS Biomed Res Int; 2015; 2015():895453. PubMed ID: 25649791 [TBL] [Abstract][Full Text] [Related]
20. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. Masiewicz P; Brzostek A; Wolański M; Dziadek J; Zakrzewska-Czerwińska J PLoS One; 2012; 7(8):e43651. PubMed ID: 22916289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]