These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35647206)

  • 1. High-Order Cardiomyopathy Human Heart Model and Mesh Generation.
    Mohammadi F; Shontz SM; Linte CA
    Comput Cardiol (2010); 2021 Sep; 2021():. PubMed ID: 35647206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiac mesh morphing method for finite element modeling of heart failure with preserved ejection fraction.
    Weissmann J; Charles CJ; Richards AM; Yap CH; Marom G
    J Mech Behav Biomed Mater; 2022 Feb; 126():104937. PubMed ID: 34979481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing.
    Dyedov V; Einstein D; Jiao X; Kuprat A; Carson J; Pin FD
    Int J Numer Methods Eng; 2009 Aug; 79(8):907-945. PubMed ID: 20161102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polygonal surface processing and mesh generation tools for the numerical simulation of the cardiac function.
    Fedele M; Quarteroni A
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3435. PubMed ID: 33415829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patient-Specific Heart Geometry Modeling for Solid Biomechanics Using Deep Learning.
    Pak DH; Liu M; Kim T; Liang L; Caballero A; Onofrey J; Ahn SS; Xu Y; McKay R; Sun W; Gleason R; Duncan JS
    IEEE Trans Med Imaging; 2024 Jan; 43(1):203-215. PubMed ID: 37432807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for biomechanics simulations using four-chamber cardiac models.
    Jafari A; Pszczolkowski E; Krishnamurthy A
    J Biomech; 2019 Jun; 91():92-101. PubMed ID: 31155211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality.
    Wang J; Yu Z
    Comput Aided Des; 2012 May; 44(5):400-412. PubMed ID: 22328787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics Simulations Using Cubic Hermite Meshes with Extraordinary Nodes for Isogeometric Cardiac Modeling.
    Krishnamurthy A; Gonzales MJ; Sturgeon G; Segars WP; McCulloch AD
    Comput Aided Geom Des; 2016 Mar; 43():27-38. PubMed ID: 27182096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-quality mesh generation for human hip based on ideal element size: methods and evaluation.
    Wang M; Gao J; Wang X
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):212-220. PubMed ID: 29058486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method for generating high-quality tetrahedral meshes of geological models by utilizing CGAL.
    Wang B; Mei G; Xu N
    MethodsX; 2020; 7():101061. PubMed ID: 33005570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical implementation of tetrahedral mesh reconstruction in emission tomography.
    Boutchko R; Sitek A; Gullberg GT
    Phys Med Biol; 2013 May; 58(9):3001-22. PubMed ID: 23588373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Skin Meshes Coarsening for Biomolecular Simulation.
    Shi X; Koehl P
    Comput Aided Geom Des; 2011 Jun; 28(5):307-320. PubMed ID: 21779137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous meshing and biomechanical modeling of human spine.
    Teo JC; Chui CK; Wang ZL; Ong SH; Yan CH; Wang SC; Wong HK; Teoh SH
    Med Eng Phys; 2007 Mar; 29(2):277-90. PubMed ID: 16679044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
    Zachariah SG; Sanders JE; Turkiyyah GM
    IEEE Trans Rehabil Eng; 1996 Jun; 4(2):91-102. PubMed ID: 8798076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free Tools and Strategies for the Generation of 3D Finite Element Meshes: Modeling of the Cardiac Structures.
    Pavarino E; Neves LA; Machado JM; de Godoy MF; Shiyou Y; Momente JC; Zafalon GF; Pinto AR; Valêncio CR
    Int J Biomed Imaging; 2013; 2013():540571. PubMed ID: 23762031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality improvement of surface triangular mesh using a modified Laplacian smoothing approach avoiding intersection.
    Liu T; Chen M; Song Y; Li H; Lu B
    PLoS One; 2017; 12(9):e0184206. PubMed ID: 28886110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.