BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35647618)

  • 21. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing.
    Dhar R; Seethy A; Pethusamy K; Singh S; Rohil V; Purkayastha K; Mukherjee I; Goswami S; Singh R; Raj A; Srivastava T; Acharya S; Rajashekhar B; Karmakar S
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077316
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenylpropanoids Following Wounding and Infection of Sweet Sorghum Lines Differing in Responses to Stalk Pathogens.
    Khasin M; Bernhardson LF; O'Neill PM; Palmer NA; Scully ED; Sattler SE; Sarath G; Funnell-Harris DL
    Phytopathology; 2024 Jan; 114(1):177-192. PubMed ID: 37486162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Quality Nuclear Genome and Mitogenome of
    Zhang W; Yang Q; Yang L; Li H; Zhou W; Meng J; Hu Y; Wang L; Kang R; Li H; Ding S; Li G
    Mol Plant Microbe Interact; 2023 Jul; 36(7):452-456. PubMed ID: 36802869
    [No Abstract]   [Full Text] [Related]  

  • 24. Competition Between Tylenchorhynchus annulatus and Mesocriconema xenoplax on Grain Sorghum as Influenced by Macrophomina phaseolina.
    Wenefrida I; Russin JS; McGawley EC
    J Nematol; 1998 Dec; 30(4):423-30. PubMed ID: 19274235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Altering Three Steps of Monolignol Biosynthesis on Sorghum Responses to Stalk Pathogens and Water Deficit.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Gries T; Ge Z; Nersesian N
    Plant Dis; 2023 Dec; 107(12):3984-3995. PubMed ID: 37430480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SSR-based detection of genetic variability in the charcoal root rot pathogen Macrophomina phaseolina.
    Jana T; Sharma TR; Singh NK
    Mycol Res; 2005 Jan; 109(Pt 1):81-6. PubMed ID: 15736865
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secretome Analysis of
    Sinha N; Patra SK; Ghosh S
    Front Microbiol; 2022; 13():847832. PubMed ID: 35479629
    [No Abstract]   [Full Text] [Related]  

  • 28. First Report of Charcoal Rot (Macrophomina phaseolina) on Sunflower in North and South Dakota.
    Gulya TJ; Krupinsky J; Draper M; Charlet LD
    Plant Dis; 2002 Aug; 86(8):923. PubMed ID: 30818662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phenotypic Variability and Genetic Diversity of the Pathogenic Fungus Macrophomina phaseolina from Several Hosts and Host Specialization in Strawberry.
    Viejobueno J; de Los Santos B; Camacho-Sanchez M; Aguado A; Camacho M; Salazar SM
    Curr Microbiol; 2022 May; 79(7):189. PubMed ID: 35551492
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and Characterization of a
    Gopalakrishnan S; Sharma R; Srinivas V; Naresh N; Mishra SP; Ankati S; Pratyusha S; Govindaraj M; Gonzalez SV; Nervik S; Simic N
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33297539
    [No Abstract]   [Full Text] [Related]  

  • 31. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn.
    Ramos AM; Gally M; Szapiro G; Itzcovich T; Carabajal M; Levin L
    Rev Argent Microbiol; 2016; 48(4):267-273. PubMed ID: 27825736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exogenous siRNAs against chitin synthase gene suppress the growth of the pathogenic fungus
    Forster H; Shuai B
    Mycologia; 2020; 112(4):699-710. PubMed ID: 32615881
    [No Abstract]   [Full Text] [Related]  

  • 33. First Report of Charcoal Rot Epidemics Caused by Macrophomina phaseolina in Soybean in Iowa.
    Yang XB; Navi SS
    Plant Dis; 2005 May; 89(5):526. PubMed ID: 30795434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetics of nonsenescence and charcoal rot resistance in sorghum.
    Tenkouano A; Miller FR; Frederiksen RA; Rosenow DT
    Theor Appl Genet; 1993 Jan; 85(5):644-8. PubMed ID: 24195941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly.
    Tan MH; Austin CM; Hammer MP; Lee YP; Croft LJ; Gan HM
    Gigascience; 2018 Mar; 7(3):1-6. PubMed ID: 29342277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptomic dataset of cultivated (
    Dutta D; Awon VK; Gangopadhyay G
    Data Brief; 2020 Dec; 33():106448. PubMed ID: 33134450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histopathological changes in root and stem of mungbean exposed to Macrophomina phaseolina and dry biomass of Chenopodium quinoa.
    Khan IH; Javaid A
    Microsc Res Tech; 2022 Jul; 85(7):2596-2606. PubMed ID: 35366387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic differentiation of charcoal rot pathogen, Macrophomina phaseolina, into specific groups using URP-PCR.
    Jana TK; Singh NK; Koundal KR; Sharma TR
    Can J Microbiol; 2005 Feb; 51(2):159-64. PubMed ID: 16091774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence of Charcoal Rot Caused by Macrophomina phaseolina on Canola in Argentina.
    Gaetán SA; Fernandez L; Madia M
    Plant Dis; 2006 Apr; 90(4):524. PubMed ID: 30786608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological Control of Charcoal Rot in Peanut Crop through Strains of
    Martínez-Salgado SJ; Andrade-Hoyos P; Parraguirre Lezama C; Rivera-Tapia A; Luna-Cruz A; Romero-Arenas O
    Plants (Basel); 2021 Nov; 10(12):. PubMed ID: 34961101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.