BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35647658)

  • 1. Controlling the Flexibility of MIL-88A(Sc) Through Synthetic Optimisation and Postsynthetic Halogenation.
    Walshe CA; Thom AJR; Wilson C; Ling S; Forgan RS
    Chemistry; 2022 Aug; 28(48):e202201364. PubMed ID: 35647658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Crystal to Single-Crystal Mechanical Contraction of Metal-Organic Frameworks through Stereoselective Postsynthetic Bromination.
    Marshall RJ; Griffin SL; Wilson C; Forgan RS
    J Am Chem Soc; 2015 Aug; 137(30):9527-30. PubMed ID: 26175317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
    Islamoglu T; Goswami S; Li Z; Howarth AJ; Farha OK; Hupp JT
    Acc Chem Res; 2017 Apr; 50(4):805-813. PubMed ID: 28177217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pressure-induced postsynthetic cluster anion substitution in a MIL-53 topology scandium metal-organic framework.
    Thom AJR; Turner GF; Davis ZH; Ward MR; Pakamorė I; Hobday CL; Allan DR; Warren MR; Leung WLW; Oswald IDH; Morris RE; Moggach SA; Ashbrook SE; Forgan RS
    Chem Sci; 2023 Jul; 14(28):7716-7724. PubMed ID: 37476711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents.
    Henke S; Schneemann A; Wütscher A; Fischer RA
    J Am Chem Soc; 2012 Jun; 134(22):9464-74. PubMed ID: 22575013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-Induced Control over Breathing Behavior in Flexible Metal-Organic Frameworks for Natural-Gas Delivery.
    Kundu T; Wahiduzzaman M; Shah BB; Maurin G; Zhao D
    Angew Chem Int Ed Engl; 2019 Jun; 58(24):8073-8077. PubMed ID: 30913352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postsynthetic Addition of Ligand Struts in Metal-Organic Frameworks: Effect of Syn/Anti Addition on Framework Structures with Distinct Topologies.
    Xu X; Yang F; Han H; Xu Y; Wei W
    Inorg Chem; 2018 Mar; 57(5):2369-2372. PubMed ID: 29465235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable metal-organic framework MIL-88A for triboelectric nanogenerator.
    Khandelwal G; Maria Joseph Raj NP; Vivekananthan V; Kim SJ
    iScience; 2021 Feb; 24(2):102064. PubMed ID: 33554068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.
    Wang Z; Tanabe KK; Cohen SM
    Chemistry; 2010 Jan; 16(1):212-7. PubMed ID: 19918824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic Visualization of Postsynthetic Nickel Clusters into Metal-Organic Framework.
    Wang XN; Zhang P; Kirchon A; Li JL; Chen WM; Zhao YM; Li B; Zhou HC
    J Am Chem Soc; 2019 Aug; 141(34):13654-13663. PubMed ID: 31398288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs.
    Marshall RJ; Griffin SL; Wilson C; Forgan RS
    Chemistry; 2016 Mar; 22(14):4870-7. PubMed ID: 26916707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity.
    Wang Z; Tanabe KK; Cohen SM
    Inorg Chem; 2009 Jan; 48(1):296-306. PubMed ID: 19053339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-switchable breathing behavior in tetrathiafulvalene-based metal-organic frameworks.
    Su J; Yuan S; Wang HY; Huang L; Ge JY; Joseph E; Qin J; Cagin T; Zuo JL; Zhou HC
    Nat Commun; 2017 Dec; 8(1):2008. PubMed ID: 29222485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Flexibility and Porosity of the Metal-Organic Framework DUT-49 through Postsynthetic Metal Exchange.
    Garai B; Bon V; Krause S; Schwotzer F; Gerlach M; Senkovska I; Kaskel S
    Chem Mater; 2020 Jan; 32(2):889-896. PubMed ID: 35601600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling the Flexibility of Carbazole-Based Metal-Organic Frameworks by Substituent Effects.
    Sugamata K; Shirai A; Minoura M
    Chemistry; 2023 May; 29(25):e202203442. PubMed ID: 36807627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating metal-organic frameworks to breathe: a postsynthetic covalent modification approach.
    Wang Z; Cohen SM
    J Am Chem Soc; 2009 Nov; 131(46):16675-7. PubMed ID: 19886623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance.
    Marshall RJ; Richards T; Hobday CL; Murphie CF; Wilson C; Moggach SA; Bennett TD; Forgan RS
    Dalton Trans; 2016 Mar; 45(10):4132-5. PubMed ID: 26583777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.