These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35647869)

  • 1. Radiofrequency Schottky Diodes Based on p-Doped Copper(I) Thiocyanate (CuSCN).
    Georgiadou DG; Wijeyasinghe N; Solomeshch O; Tessler N; Anthopoulos TD
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):29993-29999. PubMed ID: 35647869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 14 GHz Schottky Diodes Using a p-Doped Organic Polymer.
    Loganathan K; Scaccabarozzi AD; Faber H; Ferrari F; Bizak Z; Yengel E; Naphade DR; Gedda M; He Q; Solomeshch O; Adilbekova B; Yarali E; Tsetseris L; Salama KN; Heeney M; Tessler N; Anthopoulos TD
    Adv Mater; 2022 Jun; 34(22):e2108524. PubMed ID: 34990058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography.
    Wyatt-Moon G; Georgiadou DG; Semple J; Anthopoulos TD
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41965-41972. PubMed ID: 29172422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Schottky Contact Formation in Coplanar Au/ZnO/Al Nanogap Radio Frequency Diodes Processed from Solution at Low Temperature.
    Semple J; Rossbauer S; Anthopoulos TD
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23167-74. PubMed ID: 27530144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radio Frequency Coplanar ZnO Schottky Nanodiodes Processed from Solution on Plastic Substrates.
    Semple J; Rossbauer S; Burgess CH; Zhao K; Jagadamma LK; Amassian A; McLachlan MA; Anthopoulos TD
    Small; 2016 Apr; 12(15):1993-2000. PubMed ID: 26918520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible carbon nanotube Schottky diode and its integrated circuit applications.
    Lee Y; Jung H; Choi B; Yoon J; Yoo HB; Kim HJ; Park GH; Kim DM; Kim DH; Kang MH; Choi SJ
    RSC Adv; 2019 Jul; 9(38):22124-22128. PubMed ID: 35518852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.
    Sani N; Wang X; Granberg H; Andersson Ersman P; Crispin X; Dyreklev P; Engquist I; Gustafsson G; Berggren M
    Sci Rep; 2016 Jun; 6():28921. PubMed ID: 27357006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport.
    Ning P; Liang J; Li L; Chen D; Qin L; Yao X; Chen H; Huang Y
    J Colloid Interface Sci; 2021 May; 590():407-414. PubMed ID: 33561590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraflexible and High-Performance Multilayer Transparent Electrode Based on ZnO/Ag/CuSCN.
    Ji Y; Yang J; Luo W; Tang L; Bai X; Leng C; Ma C; Wei X; Wang J; Shen J; Lu S; Sun K; Shi H
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9571-9578. PubMed ID: 29451772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and up-scalable manufacturing of gigahertz nanogap diodes.
    Loganathan K; Faber H; Yengel E; Seitkhan A; Bakytbekov A; Yarali E; Adilbekova B; AlBatati A; Lin Y; Felemban Z; Yang S; Li W; Georgiadou DG; Shamim A; Lidorikis E; Anthopoulos TD
    Nat Commun; 2022 Jun; 13(1):3260. PubMed ID: 35672406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-Dependent Structural and Band Gap Tuning of Semiconductor Copper(I) Thiocyanate (CuSCN).
    Yang Z; Wu B; Zhai C; Niu S; Sun B; Dang L; Gu C; Qi X; Tian Y; Li J; Ma S; Yao M
    Inorg Chem; 2022 Dec; 61(48):19274-19281. PubMed ID: 36383131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hole-transporting transistors and circuits based on the transparent inorganic semiconductor copper(I) thiocyanate (CuSCN) processed from solution at room temperature.
    Pattanasattayavong P; Yaacobi-Gross N; Zhao K; Ndjawa GO; Li J; Yan F; O'Regan BC; Amassian A; Anthopoulos TD
    Adv Mater; 2013 Mar; 25(10):1504-9. PubMed ID: 23280854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the Semiconductor Defect Density on Solution-Processed Flexible Schottky Barrier Diodes.
    Tinoco JC; Hernandez SA; Olvera ML; Estrada M; García R; Martinez-Lopez AG
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates.
    Vlčková Živcová Z; Bouša M; Velický M; Frank O; Kavan L
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Channel Gate-Tunable Diodes Obtained by Asymmetric Contact and Adhesion Lithography on Fluoropolymers.
    Kim M; Kim S; Yoo H
    Small; 2023 Aug; 19(35):e2208144. PubMed ID: 37096940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells.
    Matebese F; Taziwa R; Mutukwa D
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572658
    [No Abstract]   [Full Text] [Related]  

  • 17. The electrical characteristics and conduction mechanisms of Zn doped silicon-based Schottky barrier diode.
    Oeba DA; Bodunrin JO; Moloi SJ
    Heliyon; 2023 Dec; 9(12):e22793. PubMed ID: 38125418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Modelling of Gallium Nitride Based Lateral Schottky Barrier Diodes with Anode Recesses for mmWave and THz Applications.
    Alathbah M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorine-Infused Wide-Band Gap p-CuSCN/n-GaN Heterojunction Ultraviolet-Light Photodetectors.
    Liang JW; Firdaus Y; Kang CH; Min JW; Min JH; Al Ibrahim RH; Wehbe N; Hedhili MN; Kaltsas D; Tsetseris L; Lopatin S; Zheng S; Ng TK; Anthopoulos TD; Ooi BS
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17889-17898. PubMed ID: 35404567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.