These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 35648036)

  • 1. A detailed study of ion transport through the SARS-CoV-2 E protein ion channel.
    Saurabh K; Solovchuk M; Sheu TW
    Nanoscale; 2022 Jun; 14(23):8291-8305. PubMed ID: 35648036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating ion transport inside the pentameric ion channel encoded in COVID-19 E protein.
    Saurabh K; Solovchuk M; Sheu TW
    Phys Rev E; 2020 Nov; 102(5-1):052408. PubMed ID: 33327170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution of Ion Channel Flow Using Immersed Boundary-Lattice Boltzmann Methods.
    Saurabh K; Solovchuk M; Sheu TWH
    J Comput Biol; 2020 Jul; 27(7):1144-1156. PubMed ID: 31692382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weak Point of SARS-CoV-2: Human and Viral Ion Channels under External Physical Fields.
    FuliƄski A
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model.
    Liu JL; Eisenberg B
    Entropy (Basel); 2020 May; 22(5):. PubMed ID: 33286322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico identification of Tretinoin as a SARS-CoV-2 envelope (E) protein ion channel inhibitor.
    Dey D; Borkotoky S; Banerjee M
    Comput Biol Med; 2020 Dec; 127():104063. PubMed ID: 33126128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The envelope protein of SARS-CoV-2 increases intra-Golgi pH and forms a cation channel that is regulated by pH.
    Cabrera-Garcia D; Bekdash R; Abbott GW; Yazawa M; Harrison NL
    J Physiol; 2021 Jun; 599(11):2851-2868. PubMed ID: 33709461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of epithelial sodium channel activity by SARS-CoV-1 and SARS-CoV-2 proteins.
    Grant SN; Lester HA
    Biophys J; 2021 Jul; 120(14):2805-2813. PubMed ID: 34197807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.
    Liu JL; Eisenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012711. PubMed ID: 26274207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations.
    Chao Z; Xie D
    J Comput Chem; 2021 Oct; 42(27):1929-1943. PubMed ID: 34382702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane transport of several ions during peritoneal dialysis: mathematical modeling.
    Galach M; Waniewski J
    Artif Organs; 2012 Sep; 36(9):E163-78. PubMed ID: 22882513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
    Nonner W; Eisenberg B
    Biophys J; 1998 Sep; 75(3):1287-305. PubMed ID: 9726931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Study of the Ion and Water Permeation and Transport Mechanisms of the SARS-CoV-2 Pentameric E Protein Channel.
    Cao Y; Yang R; Wang W; Lee I; Zhang R; Zhang W; Sun J; Xu B; Meng X
    Front Mol Biosci; 2020; 7():565797. PubMed ID: 33173781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels.
    Liu JL; Eisenberg B
    J Chem Phys; 2014 Dec; 141(22):22D532. PubMed ID: 25494803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
    Chen D
    Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K^{+} channels.
    Liu X; Lu B
    Phys Rev E; 2017 Dec; 96(6-1):062416. PubMed ID: 29347452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.
    Chaudhry JH; Comer J; Aksimentiev A; Olson LN
    Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.