These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35648174)

  • 1. Sustainable and Highly Efficient Recycling of Plastic Waste into Syngas via a Chemical Looping Scheme.
    Hu Q; Ok YS; Wang CH
    Environ Sci Technol; 2022 Jun; 56(12):8953-8963. PubMed ID: 35648174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery.
    Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A
    Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis-catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy.
    Liu Q; Jiang D; Zhou H; Yuan X; Wu C; Hu C; Luque R; Wang S; Chu S; Xiao R; Zhang H
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2305078120. PubMed ID: 37695879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of CO
    Kwon D; Jung S; Lin KA; Tsang YF; Park YK; Kwon EE
    J Hazard Mater; 2021 Oct; 419():126537. PubMed ID: 34323732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Aspen plus process simulation model for exploring the feasibility and profitability of pyrolysis process for plastic waste management.
    Hasan MM; Rasul MG; Jahirul MI; Sattar MA
    J Environ Manage; 2024 Mar; 355():120557. PubMed ID: 38460332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW).
    Al-Salem SM; Antelava A; Constantinou A; Manos G; Dutta A
    J Environ Manage; 2017 Jul; 197():177-198. PubMed ID: 28384612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis.
    N S
    Sci Total Environ; 2022 Feb; 809():151160. PubMed ID: 34695478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous solar-driven gasification of oil palm agricultural bio waste for high-quality syngas production.
    Chuayboon S; Abanades S
    Waste Manag; 2022 Dec; 154():303-311. PubMed ID: 36308797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating PET chemical recycling with pyrolysis of mixed plastic waste via pressureless alkaline depolymerization in a hydrocarbon solvent.
    Konarova M; Batalha N; Fraga G; Ahmed MHM; Pratt S; Laycock B
    Waste Manag; 2024 Feb; 174():24-30. PubMed ID: 38000219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustainable valorization of styrofoam and CO
    Choi D; Jung S; Tsang YF; Song H; Moon DH; Kwon EE
    Sci Total Environ; 2022 Aug; 834():155384. PubMed ID: 35452735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical upcycling of PVC-containing plastic wastes by thermal degradation and catalysis in a chlorine-rich environment.
    Kang J; Kim JY; Sung S; Lee Y; Gu S; Choi JW; Yoo CJ; Suh DJ; Choi J; Ha JM
    Environ Pollut; 2024 Feb; 342():123074. PubMed ID: 38048870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate?
    Kusenberg M; Eschenbacher A; Djokic MR; Zayoud A; Ragaert K; De Meester S; Van Geem KM
    Waste Manag; 2022 Feb; 138():83-115. PubMed ID: 34871884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter.
    Kusenberg M; Faussone GC; Thi HD; Roosen M; Grilc M; Eschenbacher A; De Meester S; Van Geem KM
    Sci Total Environ; 2022 Sep; 838(Pt 2):156092. PubMed ID: 35605869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closing the Carbon Loop in the Circular Plastics Economy.
    Schirmeister CG; Mülhaupt R
    Macromol Rapid Commun; 2022 Jul; 43(13):e2200247. PubMed ID: 35635841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser.
    Auxilio AR; Choo WL; Kohli I; Chakravartula Srivatsa S; Bhattacharya S
    Waste Manag; 2017 Sep; 67():143-154. PubMed ID: 28532621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impervious and influence in the liquid fuel production from municipal plastic waste through thermo-chemical biomass conversion technologies - A review.
    Banu JR; Sharmila VG; Ushani U; Amudha V; Kumar G
    Sci Total Environ; 2020 May; 718():137287. PubMed ID: 32086085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valorizing plastic toy wastes to flammable gases through CO
    Jung S; Kim JH; Tsang YF; Song H; Kwon EE
    J Hazard Mater; 2022 Jul; 434():128850. PubMed ID: 35405610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.