These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35648500)

  • 1. Theory of Spatial Gradients of Relaxation, Vitrification Temperature and Fragility of Glass-Forming Polymer Liquids Near Solid Substrates.
    Phan AD; Schweizer KS
    ACS Macro Lett; 2020 Apr; 9(4):448-453. PubMed ID: 35648500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of the spatial transfer of interface-nucleated changes of dynamical constraints and its consequences in glass-forming films.
    Phan AD; Schweizer KS
    J Chem Phys; 2019 Jan; 150(4):044508. PubMed ID: 30709240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confinement Effects on the Spatially Inhomogeneous Dynamics in Metallic Glass Films.
    Phan AD
    J Phys Chem B; 2022 Feb; 126(7):1609-1614. PubMed ID: 35166111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of chemistry, interfacial width, and non-isothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2017 May; 146(20):203301. PubMed ID: 28571330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2015 Dec; 143(24):244705. PubMed ID: 26723700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement.
    Schweizer KS; Simmons DS
    J Chem Phys; 2019 Dec; 151(24):240901. PubMed ID: 31893888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does fragility of glass formation determine the strength of T
    Mangalara JH; Marvin MD; Wiener NR; Mackura ME; Simmons DS
    J Chem Phys; 2017 Mar; 146(10):104902. PubMed ID: 28298103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated penetrant dynamics in glass forming liquids: size effects, decoupling, slaving, collective elasticity and correlation with matrix compressibility.
    Mei B; Schweizer KS
    Soft Matter; 2021 Mar; 17(9):2624-2639. PubMed ID: 33528485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Communication: Slow relaxation, spatial mobility gradients, and vitrification in confined films.
    Mirigian S; Schweizer KS
    J Chem Phys; 2014 Oct; 141(16):161103. PubMed ID: 25362264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastically Collective Nonlinear Langevin Equation Theory of Glass-Forming Liquids: Transient Localization, Thermodynamic Mapping, and Cooperativity.
    Phan AD; Schweizer KS
    J Phys Chem B; 2018 Sep; 122(35):8451-8461. PubMed ID: 30091919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A collective elastic fluctuation mechanism for decoupling and stretched relaxation in glassy colloidal and molecular liquids.
    Xie SJ; Schweizer KS
    J Chem Phys; 2020 Jan; 152(3):034502. PubMed ID: 31968977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of the structural relaxation time in equilibrium below the nominal T(g): results from freestanding polymer films.
    Ngai KL; Capaccioli S; Paluch M; Prevosto D
    J Phys Chem B; 2014 May; 118(20):5608-14. PubMed ID: 24798795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling computational and experimental trends in the temperature dependence of the interfacial mobility of polymer films.
    Zhang W; Starr FW; Douglas JF
    J Chem Phys; 2020 Mar; 152(12):124703. PubMed ID: 32241151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films.
    Glor EC; Angrand GV; Fakhraai Z
    J Chem Phys; 2017 May; 146(20):203330. PubMed ID: 28571332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films.
    Ghanekarade A; Phan AD; Schweizer KS; Simmons DS
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34326262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids.
    Pueblo CE; Sun M; Kelton KF
    Nat Mater; 2017 Aug; 16(8):792-796. PubMed ID: 28692041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment.
    Eastwood MP; Chitra T; Jumper JM; Palmo K; Pan AC; Shaw DE
    J Phys Chem B; 2013 Oct; 117(42):12898-907. PubMed ID: 23841719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonmonotonic dynamic correlations in quasi-two-dimensional confined glass-forming liquids.
    Mei B; Lu Y; An L; Li H; Wang L
    Phys Rev E; 2017 May; 95(5-1):050601. PubMed ID: 28618563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.