These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 35648840)
1. Nanoconfined Electrochemical Collision and Catalysis of Single Enzyme inside Carbon Nanopipettes. Shen X; Liu R; Wang D Anal Chem; 2022 Jun; 94(23):8110-8114. PubMed ID: 35648840 [TBL] [Abstract][Full Text] [Related]
2. Electrodeposition of Metal Nanoparticles inside Carbon Nanopipettes for Sensing Applications. Wang Y; Liu R; Ma Y; Shen X; Wang D Anal Chem; 2022 Dec; 94(49):16987-16991. PubMed ID: 36449549 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical Collision of Single Silver Nanoparticles in Carbon Nanopipettes. Liu R; Shen X; Wang D Anal Chem; 2021 May; 93(20):7394-7398. PubMed ID: 33978403 [TBL] [Abstract][Full Text] [Related]
4. Pressure-Regulated Single-Entity Electrochemistry Inside Carbon Nanopipettes. Liu R; Wang D ACS Sens; 2022 Apr; 7(4):1138-1144. PubMed ID: 35341239 [TBL] [Abstract][Full Text] [Related]
5. Single molecular catalysis of a redox enzyme on nanoelectrodes. Han L; Wang W; Nsabimana J; Yan JW; Ren B; Zhan D Faraday Discuss; 2016 Dec; 193():133-139. PubMed ID: 27711893 [TBL] [Abstract][Full Text] [Related]
6. Nanopipettes for the Electrochemical Study of Enhanced Enzymatic Activity in a Femtoliter Space. Wang Y; Pan R; Jiang D; Jiang D; Chen HY Anal Chem; 2021 Nov; 93(43):14521-14526. PubMed ID: 34666486 [TBL] [Abstract][Full Text] [Related]
7. Combined Blip and Staircase Response of Ascorbic Acid-Stabilized Copper Single Nanoparticle Collision by Electrocatalytic Glucose Oxidation. Choi YD; Jung SY; Kim KJ; Kwon SJ Chem Asian J; 2016 May; 11(9):1338-42. PubMed ID: 26910394 [TBL] [Abstract][Full Text] [Related]
8. Intracellular Wireless Analysis of Single Cells by Bipolar Electrochemiluminescence Confined in a Nanopipette. Wang Y; Jin R; Sojic N; Jiang D; Chen HY Angew Chem Int Ed Engl; 2020 Jun; 59(26):10416-10420. PubMed ID: 32216004 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling properties. Tujunen N; Kaivosoja E; Protopopova V; Valle-Delgado JJ; Österberg M; Koskinen J; Laurila T Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():70-8. PubMed ID: 26117740 [TBL] [Abstract][Full Text] [Related]
10. Multivalent Ion-Modulated Electron Transfer Processes in Carbon Nanopipettes. Wang Y; Liu R; Shen X; Wang D J Phys Chem Lett; 2022 Dec; 13(49):11369-11374. PubMed ID: 36454602 [TBL] [Abstract][Full Text] [Related]
11. A novel non-enzymatic H Li Y; Tang L; Deng D; Ye J; Wu Z; Wang J; Luo L Colloids Surf B Biointerfaces; 2019 Jul; 179():293-298. PubMed ID: 30981064 [TBL] [Abstract][Full Text] [Related]
12. A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection. Guan JF; Huang ZN; Zou J; Jiang XY; Peng DM; Yu JG Ecotoxicol Environ Saf; 2020 Mar; 190():110123. PubMed ID: 31891837 [TBL] [Abstract][Full Text] [Related]
13. Facile synthesis of a Cu-based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability. Zhang Y; Bo X; Luhana C; Wang H; Li M; Guo L Chem Commun (Camb); 2013 Aug; 49(61):6885-7. PubMed ID: 23799512 [TBL] [Abstract][Full Text] [Related]
14. Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. Zhu F; Wang X; Yang X; Zhao C; Zhang Y; Qu S; Wu S; Ji W Anal Methods; 2021 Jun; 13(22):2512-2518. PubMed ID: 34002739 [TBL] [Abstract][Full Text] [Related]
15. Molecular Electrocatalytic Processes in Carbon Nanopipettes. Shen X; Liu R; Wang D J Phys Chem Lett; 2023 Oct; 14(39):8805-8810. PubMed ID: 37747996 [TBL] [Abstract][Full Text] [Related]
16. The Modification and Applications of Nanopipettes in Electrochemical Analysis. Wang XY; Lv J; Wu X; Hong Q; Qian RC Chempluschem; 2023 Jul; 88(7):e202300100. PubMed ID: 37442793 [TBL] [Abstract][Full Text] [Related]
17. Hydrogen peroxide sensing in body fluids and tumor cells via in situ produced redox couples on two-dimensional holey CuCo Xie J; Cheng D; Zhou Z; Pang X; Liu M; Yin P; Zhang Y; Li H; Liu X; Yao S Mikrochim Acta; 2020 Jul; 187(8):469. PubMed ID: 32712816 [TBL] [Abstract][Full Text] [Related]
18. In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Hu S; Lin Y; Teng J; Wong WL; Qiu B Mikrochim Acta; 2020 Nov; 187(12):670. PubMed ID: 33219870 [TBL] [Abstract][Full Text] [Related]
19. Au nanoparticles-ZnO composite nanotubes using natural silk fibroin fiber as template for electrochemical non-enzymatic sensing of hydrogen peroxide. Chen L; Xu X; Cui F; Qiu Q; Chen X; Xu J Anal Biochem; 2018 Aug; 554():1-8. PubMed ID: 29802843 [TBL] [Abstract][Full Text] [Related]
20. Comparison of carbon materials as electrodes for enzyme electrocatalysis: hydrogenase as a case study. Quinson J; Hidalgo R; Ash PA; Dillon F; Grobert N; Vincent KA Faraday Discuss; 2014; 172():473-96. PubMed ID: 25426610 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]