These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 35649040)
21. Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature. Xu X; Jin S Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33219020 [TBL] [Abstract][Full Text] [Related]
22. Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. Tran TT; Wang D; Xu ZQ; Yang A; Toth M; Odom TW; Aharonovich I Nano Lett; 2017 Apr; 17(4):2634-2639. PubMed ID: 28318263 [TBL] [Abstract][Full Text] [Related]
23. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity. Chen S; Li G; Lei D; Cheah KW Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114 [TBL] [Abstract][Full Text] [Related]
24. Strong Coupling of Carbon Quantum Dots in Plasmonic Nanocavities. Katzen JM; Tserkezis C; Cai Q; Li LH; Kim JM; Lee G; Yi GR; Hendren WR; Santos EJG; Bowman RM; Huang F ACS Appl Mater Interfaces; 2020 Apr; 12(17):19866-19873. PubMed ID: 32267669 [TBL] [Abstract][Full Text] [Related]
25. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime. Zhou N; Yuan M; Gao Y; Li D; Yang D ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554 [TBL] [Abstract][Full Text] [Related]
30. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons. Leng H; Szychowski B; Daniel MC; Pelton M Nat Commun; 2018 Oct; 9(1):4012. PubMed ID: 30275446 [TBL] [Abstract][Full Text] [Related]
32. Properties of quantum dots coupled to plasmons and optical cavities. Westmoreland DE; McClelland KP; Perez KA; Schwabacher JC; Zhang Z; Weiss EA J Chem Phys; 2019 Dec; 151(21):210901. PubMed ID: 31822081 [TBL] [Abstract][Full Text] [Related]
33. Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure. Zhong JH; Vogelsang J; Yi JM; Wang D; Wittenbecher L; Mikaelsson S; Korte A; Chimeh A; Arnold CL; Schaaf P; Runge E; Huillier AL; Mikkelsen A; Lienau C Nat Commun; 2020 Mar; 11(1):1464. PubMed ID: 32193407 [TBL] [Abstract][Full Text] [Related]
34. Enhanced Emission from Bright Excitons in Asymmetrically Strained Colloidal CdSe/Cd Fedin I; Goryca M; Liu D; Tretiak S; Klimov VI; Crooker SA ACS Nano; 2021 Sep; 15(9):14444-14452. PubMed ID: 34473467 [TBL] [Abstract][Full Text] [Related]
35. Dynamics of Strong Coupling between CdSe Quantum Dots and Surface Plasmon Polaritons in Subwavelength Hole Array. Wang H; Wang HY; Toma A; Yano TA; Chen QD; Xu HL; Sun HB; Proietti Zaccaria R J Phys Chem Lett; 2016 Nov; 7(22):4648-4654. PubMed ID: 27804299 [TBL] [Abstract][Full Text] [Related]
36. Efficient Emission Enhancement of Single CdSe/CdS/PMMA Quantum Dots through Controlled Near-Field Coupling to Plasmonic Bullseye Resonators. Werschler F; Lindner B; Hinz C; Conradt F; Gumbsheimer P; Behovits Y; Negele C; de Roo T; Tzang O; Mecking S; Leitenstorfer A; Seletskiy DV Nano Lett; 2018 Sep; 18(9):5396-5400. PubMed ID: 30075629 [TBL] [Abstract][Full Text] [Related]
37. Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources. Singh A; de Roque PM; Calbris G; Hugall JT; van Hulst NF Nano Lett; 2018 Apr; 18(4):2538-2544. PubMed ID: 29570309 [TBL] [Abstract][Full Text] [Related]
38. Room-temperature strong coupling in a single-photon emitter-metasurface system. Do TTH; Nonahal M; Li C; Valuckas V; Tan HH; Kuznetsov AI; Nguyen HS; Aharonovich I; Ha ST Nat Commun; 2024 Mar; 15(1):2281. PubMed ID: 38480721 [TBL] [Abstract][Full Text] [Related]
39. Molecular Vibrational Polariton Dynamics: What Can Polaritons Do? Xiong W Acc Chem Res; 2023 Apr; 56(7):776-786. PubMed ID: 36930582 [TBL] [Abstract][Full Text] [Related]