These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 35649040)

  • 41. Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion.
    Xu Z; Huang Z; Jin T; Lian T; Tang ML
    Acc Chem Res; 2021 Jan; 54(1):70-80. PubMed ID: 33141563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Real-time path-integral approach for dissipative quantum dot-cavity quantum electrodynamics: impure dephasing-induced effects.
    Nahri DG; Mathkoor FH; Raymond Ooi CH
    J Phys Condens Matter; 2017 Feb; 29(5):055701. PubMed ID: 27966466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime.
    Ishida N; Byrnes T; Nori F; Yamamoto Y
    Sci Rep; 2013; 3():1180. PubMed ID: 23378913
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Near-infrared nano-imaging spectroscopy using a phase change mask method.
    Sato Y; Kanazawa S; Saiki T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i10. PubMed ID: 25359798
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Photodynamics of Bright Subnanosecond Emission from Pure Single-Photon Sources in Hexagonal Boron Nitride.
    Gritsienko AV; Duleba A; Pugachev MV; Kurochkin NS; Vlasov II; Vitukhnovsky AG; Kuntsevich AY
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synergy of Excitation Enhancement and the Purcell Effect for Strong Photoluminescence Enhancement in a Thin-Film Hybrid Structure Based on Quantum Dots and Plasmon Nanoparticles.
    Krivenkov V; Samokhvalov P; Nabiev I; Rakovich YP
    J Phys Chem Lett; 2020 Oct; 11(19):8018-8025. PubMed ID: 32886517
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Resolving single plasmons generated by multiquantum-emitters on a silver nanowire.
    Li Q; Wei H; Xu H
    Nano Lett; 2014 Jun; 14(6):3358-63. PubMed ID: 24844583
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coupling Single Photons from Discrete Quantum Emitters in WSe
    Blauth M; Jürgensen M; Vest G; Hartwig O; Prechtl M; Cerne J; Finley JJ; Kaniber M
    Nano Lett; 2018 Nov; 18(11):6812-6819. PubMed ID: 30153417
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling.
    Niu Y; Xu H; Wei H
    Phys Rev Lett; 2022 Apr; 128(16):167402. PubMed ID: 35522488
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Doping MAPbBr
    Baronnier J; Houel J; Dujardin C; Kulzer F; Mahler B
    Nanoscale; 2022 Apr; 14(15):5769-5781. PubMed ID: 35352077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intermediate Field Coupling of Single Epitaxial Quantum Dots to Plasmonic Waveguides.
    Seidel M; Yang Y; Schumacher T; Huo Y; Covre da Silva SF; Rodt S; Rastelli A; Reitzenstein S; Lippitz M
    Nano Lett; 2023 Nov; 23(22):10532-10537. PubMed ID: 37917860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride.
    Sakib MA; Triplett B; Harris W; Hussain N; Senichev A; Momenzadeh M; Bocanegra J; Vabishchevich P; Wu R; Boltasseva A; Shalaev VM; Shcherbakov MR
    Nano Lett; 2024 Oct; 24(40):12390-12397. PubMed ID: 39311406
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study.
    Kuisma M; Rousseaux B; Czajkowski KM; Rossi TP; Shegai T; Erhart P; Antosiewicz TJ
    ACS Photonics; 2022 Mar; 9(3):1065-1077. PubMed ID: 35308405
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic metaresonances: harnessing nonlocal effects for prospective biomedical applications.
    Hapuarachchi H; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2019 Aug; 31(32):325301. PubMed ID: 30897555
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmon-induced coherence, exciton-induced transparency, and Fano interference for hybrid plasmonic systems in strong coupling regime.
    Scott Z; Muhammad S; Shahbazyan TV
    J Chem Phys; 2022 May; 156(19):194702. PubMed ID: 35597643
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-molecule strong coupling at room temperature in plasmonic nanocavities.
    Chikkaraddy R; de Nijs B; Benz F; Barrow SJ; Scherman OA; Rosta E; Demetriadou A; Fox P; Hess O; Baumberg JJ
    Nature; 2016 Jul; 535(7610):127-30. PubMed ID: 27296227
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Third emission mechanism in solid-state nanocavity quantum electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Rep Prog Phys; 2012 Sep; 75(9):096401. PubMed ID: 22885777
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.