These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35649342)

  • 21. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.
    Wang X; Liu M; Zhang Y; He S; Qin C; Li Y; Lu T
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34368838
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PPAEDTI: Personalized Propagation Auto-Encoder Model for Predicting Drug-Target Interactions.
    Li YC; You ZH; Yu CQ; Wang L; Wong L; Hu L; Hu PW; Huang YA
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):573-582. PubMed ID: 36301791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. miDruglikeness: Subdivisional Drug-Likeness Prediction Models Using Active Ensemble Learning Strategies.
    Cai C; Lin H; Wang H; Xu Y; Ouyang Q; Lai L; Pei J
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affinity2Vec: drug-target binding affinity prediction through representation learning, graph mining, and machine learning.
    Thafar MA; Alshahrani M; Albaradei S; Gojobori T; Essack M; Gao X
    Sci Rep; 2022 Mar; 12(1):4751. PubMed ID: 35306525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmarking protein classification algorithms via supervised cross-validation.
    Kertész-Farkas A; Dhir S; Sonego P; Pacurar M; Netoteia S; Nijveen H; Kuzniar A; Leunissen JA; Kocsor A; Pongor S
    J Biochem Biophys Methods; 2008 Apr; 70(6):1215-23. PubMed ID: 17604112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. REPRODUCIBLE DRUG REPURPOSING: WHEN SIMILARITY DOES NOT SUFFICE.
    Guney E
    Pac Symp Biocomput; 2017; 22():132-143. PubMed ID: 27896969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Drug Expression Profiles and Machine Learning Approach for Drug Repurposing.
    Zhao K; So HC
    Methods Mol Biol; 2019; 1903():219-237. PubMed ID: 30547445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico drug repositioning using deep learning and comprehensive similarity measures.
    Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH
    BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey.
    Ezzat A; Wu M; Li XL; Kwoh CK
    Brief Bioinform; 2019 Jul; 20(4):1337-1357. PubMed ID: 29377981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does adding the drug-drug similarity to drug-target interaction prediction methods make a noticeable improvement in their efficiency?
    Hassanzadeh R; Shabani-Mashcool S
    BMC Bioinformatics; 2022 Jul; 23(1):278. PubMed ID: 35836119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning Multi-Scale Heterogeneous Representations and Global Topology for Drug-Target Interaction Prediction.
    Xuan P; Hu K; Cui H; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1891-1902. PubMed ID: 34673498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Application of Computational Drug Repurposing Based on Transcriptomic Signatures.
    Karatzas E; Kolios G; Spyrou GM
    Methods Mol Biol; 2019; 1903():149-177. PubMed ID: 30547441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Computational Drug Repositioning Without Negative Sampling.
    Yang X; Yang G; Chu J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1506-1517. PubMed ID: 36197871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EDFace-Celeb-1 M: Benchmarking Face Hallucination With a Million-Scale Dataset.
    Zhang K; Li D; Luo W; Liu J; Deng J; Liu W; Zafeiriou S
    IEEE Trans Pattern Anal Mach Intell; 2023 Mar; 45(3):3968-3978. PubMed ID: 35687621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational drug repositioning using low-rank matrix approximation and randomized algorithms.
    Luo H; Li M; Wang S; Liu Q; Li Y; Wang J
    Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AttentionSiteDTI: an interpretable graph-based model for drug-target interaction prediction using NLP sentence-level relation classification.
    Yazdani-Jahromi M; Yousefi N; Tayebi A; Kolanthai E; Neal CJ; Seal S; Garibay OO
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35817396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.