These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 35649392)
1. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins. Peng X; Wang X; Guo Y; Ge Z; Li F; Gao X; Song J Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649392 [TBL] [Abstract][Full Text] [Related]
2. PreRBP-TL: prediction of species-specific RNA-binding proteins based on transfer learning. Zhang J; Yan K; Chen Q; Liu B Bioinformatics; 2022 Apr; 38(8):2135-2143. PubMed ID: 35176130 [TBL] [Abstract][Full Text] [Related]
3. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. Pan X; Shen HB BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811 [TBL] [Abstract][Full Text] [Related]
4. RNA-binding protein recognition based on multi-view deep feature and multi-label learning. Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039 [TBL] [Abstract][Full Text] [Related]
5. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction. Su Y; Luo Y; Zhao X; Liu Y; Peng J PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777 [TBL] [Abstract][Full Text] [Related]
6. RBPLight: a computational tool for discovery of plant-specific RNA-binding proteins using light gradient boosting machine and ensemble of evolutionary features. Pradhan UK; Meher PK; Naha S; Pal S; Gupta S; Gupta A; Parsad R Brief Funct Genomics; 2023 Nov; 22(5):401-410. PubMed ID: 37158175 [TBL] [Abstract][Full Text] [Related]
7. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539 [TBL] [Abstract][Full Text] [Related]
8. A deep learning framework for modeling structural features of RNA-binding protein targets. Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480 [TBL] [Abstract][Full Text] [Related]
9. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network. Wu H; Pan X; Yang Y; Shen HB Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803 [TBL] [Abstract][Full Text] [Related]
10. Human protein-RNA interaction network is highly stable across mammals. Ramakrishnan A; Janga SC BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461 [TBL] [Abstract][Full Text] [Related]
12. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network. Zhang J; Chen Q; Liu B J Mol Biol; 2020 Nov; 432(22):5860-5875. PubMed ID: 32920048 [TBL] [Abstract][Full Text] [Related]
13. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. Zhang K; Pan X; Yang Y; Shen HB RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716 [TBL] [Abstract][Full Text] [Related]
14. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. Pan X; Rijnbeek P; Yan J; Shen HB BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003 [TBL] [Abstract][Full Text] [Related]
15. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. Niu M; Zou Q; Lin C PLoS Comput Biol; 2022 Jan; 18(1):e1009798. PubMed ID: 35051187 [TBL] [Abstract][Full Text] [Related]
16. Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network. Chung T; Kim D PLoS One; 2019; 14(4):e0216257. PubMed ID: 31026297 [TBL] [Abstract][Full Text] [Related]
17. Prediction of clustered RNA-binding protein motif sites in the mammalian genome. Zhang C; Lee KY; Swanson MS; Darnell RB Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613 [TBL] [Abstract][Full Text] [Related]
18. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488 [TBL] [Abstract][Full Text] [Related]
19. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning. Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214 [TBL] [Abstract][Full Text] [Related]
20. In silico characterization and prediction of global protein-mRNA interactions in yeast. Pancaldi V; Bähler J Nucleic Acids Res; 2011 Aug; 39(14):5826-36. PubMed ID: 21459850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]