These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 35649392)

  • 21. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AIRBP: Accurate identification of RNA-binding proteins using machine learning techniques.
    Mishra A; Khanal R; Kabir WU; Hoque T
    Artif Intell Med; 2021 Mar; 113():102034. PubMed ID: 33685590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inferring RNA sequence preferences for poorly studied RNA-binding proteins based on co-evolution.
    Yang S; Wang J; Ng RT
    BMC Bioinformatics; 2018 Mar; 19(1):96. PubMed ID: 29529991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep neural networks for inferring binding sites of RNA-binding proteins by using distributed representations of RNA primary sequence and secondary structure.
    Deng L; Liu Y; Shi Y; Zhang W; Yang C; Liu H
    BMC Genomics; 2020 Dec; 21(Suppl 13):866. PubMed ID: 33334313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.
    Zhang L; Lu C; Zeng M; Li Y; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic benchmark of machine learning methods for protein-RNA interaction prediction.
    Horlacher M; Cantini G; Hesse J; Schinke P; Goedert N; Londhe S; Moyon L; Marsico A
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37635383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RBPsuite: RNA-protein binding sites prediction suite based on deep learning.
    Pan X; Fang Y; Li X; Yang Y; Shen HB
    BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. beRBP: binding estimation for human RNA-binding proteins.
    Yu H; Wang J; Sheng Q; Liu Q; Shyr Y
    Nucleic Acids Res; 2019 Mar; 47(5):e26. PubMed ID: 30590704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inferring RNA-binding protein target preferences using adversarial domain adaptation.
    Liu Y; Li R; Luo J; Zhang Z
    PLoS Comput Biol; 2022 Feb; 18(2):e1009863. PubMed ID: 35202389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.
    Wang Z; Lei X
    Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning.
    Wang J; Horlacher M; Cheng L; Winther O
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38317052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNAProt: an efficient and feature-rich RNA binding protein binding site predictor.
    Uhl M; Tran VD; Heyl F; Backofen R
    Gigascience; 2021 Aug; 10(8):. PubMed ID: 34406415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Prediction of RNA-Binding Proteins and Binding Sites.
    Si J; Cui J; Cheng J; Wu R
    Int J Mol Sci; 2015 Nov; 16(11):26303-17. PubMed ID: 26540053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DeepPN: a deep parallel neural network based on convolutional neural network and graph convolutional network for predicting RNA-protein binding sites.
    Zhang J; Liu B; Wang Z; Lehnert K; Gahegan M
    BMC Bioinformatics; 2022 Jun; 23(1):257. PubMed ID: 35768792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks.
    Yuan L; Yang Y
    Front Genet; 2020; 11():632861. PubMed ID: 33552144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.