BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35649643)

  • 1. A reversible turn-on fluorescent probe for quantitative imaging and dynamic monitoring of cellular glutathione.
    Hou S; Wang Y; Zhang Y; Wang W; Zhou X
    Anal Chim Acta; 2022 Jun; 1214():339957. PubMed ID: 35649643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reversible Fluorescent Probe for Real-Time Quantitative Monitoring of Cellular Glutathione.
    Liu Z; Zhou X; Miao Y; Hu Y; Kwon N; Wu X; Yoon J
    Angew Chem Int Ed Engl; 2017 May; 56(21):5812-5816. PubMed ID: 28371097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Real-Time Imaging of Glutathione with Subcellular Resolution.
    Jiang X; Zhang C; Chen J; Choi S; Zhou Y; Zhao M; Song X; Chen X; Maletić-Savatić M; Palzkill T; Moore D; Wang MC; Wang J
    Antioxid Redox Signal; 2019 Jun; 30(16):1900-1910. PubMed ID: 30358421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative imaging of glutathione in live cells using a reversible reaction-based ratiometric fluorescent probe.
    Jiang X; Yu Y; Chen J; Zhao M; Chen H; Song X; Matzuk AJ; Carroll SL; Tan X; Sizovs A; Cheng N; Wang MC; Wang J
    ACS Chem Biol; 2015 Mar; 10(3):864-74. PubMed ID: 25531746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Imaging of Intracellular Glutathione Levels Based on a Ratiometric Fluorescent Probe with Extremely Fast Response.
    Tian M; Liu XY; He H; Ma XZ; Liang C; Liu Y; Jiang FL
    Anal Chem; 2020 Jul; 92(14):10068-10075. PubMed ID: 32538069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Route to Quantitative Detection and Real-Time Monitoring of Glutathione in Living Cells by Reversible Fluorescent Probes.
    Tian M; Liu Y; Jiang FL
    Anal Chem; 2020 Nov; 92(21):14285-14291. PubMed ID: 33063515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new xanthene-based fluorescent probe with a red light emission for selectively detecting glutathione and imaging in living cells.
    Wan Y; Li Y; Liao Z; Tang Z; Li Y; Zhao Y; Xiong B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117265. PubMed ID: 31234021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational molecular design of a reversible BODIPY-Based fluorescent probe for real-time imaging of GSH dynamics in living cells.
    Zhang Y; Zhang J; Su M; Li C
    Biosens Bioelectron; 2021 Mar; 175():112866. PubMed ID: 33272867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics.
    Umezawa K; Yoshida M; Kamiya M; Yamasoba T; Urano Y
    Nat Chem; 2017 Mar; 9(3):279-286. PubMed ID: 28221345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dual-selective fluorescent probe for discriminating glutathione and homocysteine simultaneously.
    Huang J; Chen Y; Qi J; Zhou X; Niu L; Yan Z; Wang J; Zhao G
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():105-111. PubMed ID: 29738890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of glutathione with high throughput live-cell imaging.
    Qi X; Chen J; Jiang X; Lu D; Yu X; Lin H; Monroy EY; Wang MC; Wang J
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of a reversible fluorescent probe for sensing GSH in mitochondria.
    Shu W; Yu J; Wang H; Yu A; Xiao L; Li Z; Zhang H; Zhang Y; Wu Y
    Anal Chim Acta; 2022 Aug; 1220():340081. PubMed ID: 35868707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Infrared Fluorescent Probe with High Quantum Yield and Its Application in the Selective Detection of Glutathione in Living Cells and Tissues.
    Xie JY; Li CY; Li YF; Fei J; Xu F; Ou-Yang J; Liu J
    Anal Chem; 2016 Oct; 88(19):9746-9752. PubMed ID: 27605432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-response fluorescent probe for the discrimination of cysteine from glutathione and homocysteine.
    Ji X; Lv M; Pan F; Zhang J; Wang J; Wang J; Zhao W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():1-7. PubMed ID: 30077035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioimaging of Glutathione with a Two-Photon Fluorescent Probe and Its Potential Application for Surgery Guide in Laryngeal Cancer.
    Zou Y; Li M; Xing Y; Duan T; Zhou X; Yu F
    ACS Sens; 2020 Jan; 5(1):242-249. PubMed ID: 31815435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative real-time imaging of glutathione.
    Jiang X; Chen J; Bajić A; Zhang C; Song X; Carroll SL; Cai ZL; Tang M; Xue M; Cheng N; Schaaf CP; Li F; MacKenzie KR; Ferreon ACM; Xia F; Wang MC; Maletić-Savatić M; Wang J
    Nat Commun; 2017 Jul; 8():16087. PubMed ID: 28703127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues.
    Yin J; Kwon Y; Kim D; Lee D; Kim G; Hu Y; Ryu JH; Yoon J
    J Am Chem Soc; 2014 Apr; 136(14):5351-8. PubMed ID: 24649915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel near-infrared fluorescent probe for the dynamic monitoring of the concentration of glutathione in living cells.
    Liang F; Jiao S; Jin D; Dong L; Lin S; Song D; Ma P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117403. PubMed ID: 31344582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rhodol-hemicyanine based ratiometric fluorescent probe for real-time monitoring of glutathione dynamics in living cells.
    Ren M; Wang L; Lv X; Sun Y; Chen H; Zhang K; Wu Q; Bai Y; Guo W
    Analyst; 2019 Dec; 144(24):7457-7462. PubMed ID: 31710053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.