These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35649792)

  • 1. 10-nanosecond dead time and low afterpulsing with a free-running reach-through single-photon avalanche diode.
    Farina S; Labanca I; Acconcia G; Ghioni M; Rech I
    Rev Sci Instrum; 2022 May; 93(5):053102. PubMed ID: 35649792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the single-photon detection performance of InGaAs negative-feedback avalanche diode with fast active quenching.
    Liu J; Xu Y; Li Y; Liu Z; Zhao X
    Opt Express; 2021 Mar; 29(7):10150-10161. PubMed ID: 33820148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 4 ns dead time with a fully integrated active quenching circuit driving a custom single photon avalanche diode.
    Giudici A; Acconcia G; Labanca I; Ghioni M; Rech I
    Rev Sci Instrum; 2022 Apr; 93(4):043103. PubMed ID: 35489934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique.
    Dolatpoor Lakeh M; Kammerer JB; Aguénounon E; Issartel D; Schell JB; Rink S; Cathelin A; Calmon F; Uhring W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34200801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.
    Yan Z; Hamel DR; Heinrichs AK; Jiang X; Itzler MA; Jennewein T
    Rev Sci Instrum; 2012 Jul; 83(7):073105. PubMed ID: 22852669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. InGaAs-GaAs Nanowire Avalanche Photodiodes Toward Single-Photon Detection in Free-Running Mode.
    Farrell AC; Meng X; Ren D; Kim H; Senanayake P; Hsieh NY; Rong Z; Chang TY; Azizur-Rahman KM; Huffaker DL
    Nano Lett; 2019 Jan; 19(1):582-590. PubMed ID: 30517782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of an Electronic Interface for Single-Photon Avalanche Diodes.
    Pullano SA; Oliva G; Titirsha T; Shuvo MMH; Islam SK; Laganà F; La Gatta A; Fiorillo AS
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variable-load quenching circuit for single-photon avalanche diodes.
    Tisa S; Guerrieri F; Zappa F
    Opt Express; 2008 Feb; 16(3):2232-44. PubMed ID: 18542303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing Afterpulsing in InGaAs(P) Single-Photon Detectors with Hybrid Quenching.
    Liu J; Xu Y; Wang Z; Li Y; Gu Y; Liu Z; Zhao X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling for Single-Photon Avalanche Diodes: State-of-the-Art and Research Challenges.
    Qian X; Jiang W; Elsharabasy A; Deen MJ
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avalanche Transients of Thick 0.35 µm CMOS Single-Photon Avalanche Diodes.
    Goll B; Steindl B; Zimmermann H
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32961756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes.
    Gallivanoni A; Rech I; Resnati D; Ghioni M; Cova S
    Opt Express; 2006 Jun; 14(12):5021-30. PubMed ID: 19516662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise and Breakdown Characterization of SPAD Detectors with Time-Gated Photon-Counting Operation.
    Mahmoudi H; Hofbauer M; Goll B; Zimmermann H
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method to evaluate afterpulsing probability in single-photon avalanche diodes.
    Tzou BW; Wu JY; Lee YS; Lin SD
    Opt Lett; 2015 Aug; 40(16):3774-7. PubMed ID: 26274657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm.
    Yu C; Li T; Zhao XS; Lu H; Zhang R; Xu F; Zhang J; Pan JW
    Rev Sci Instrum; 2023 Mar; 94(3):033101. PubMed ID: 37012750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.
    Acconcia G; Labanca I; Rech I; Gulinatti A; Ghioni M
    Rev Sci Instrum; 2017 Feb; 88(2):026103. PubMed ID: 28249471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays.
    Privitera S; Tudisco S; Lanzanò L; Musumeci F; Pluchino A; Scordino A; Campisi A; Cosentino L; Finocchiaro P; Condorelli G; Mazzillo M; Lombardo S; Sciacca E
    Sensors (Basel); 2008 Aug; 8(8):4636-4655. PubMed ID: 27873777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast fully-integrated front-end circuit to overcome pile-up limits in time-correlated single photon counting with single photon avalanche diodes.
    Acconcia G; Cominelli A; Ghioni M; Rech I
    Opt Express; 2018 Jun; 26(12):15398-15410. PubMed ID: 30114802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-Running Single-Photon Detection via GHz Gated InGaAs/InP APD for High Time Resolution and Count Rate up to 500 Mcount/s.
    Wu W; Shan X; Long Y; Ma J; Huang K; Yan M; Liang Y; Zeng H
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Active-Quenching SPAD Array Based on the Tri-State Gates of FPGA and Packaged with Bare Chip Stacking.
    Liu L; Lv W; Liu J; Zhang X; Liang K; Yang R; Han D
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.